Verner Marc-André, Gaspar Fraser W, Chevrier Jonathan, Gunier Robert B, Sjödin Andreas, Bradman Asa, Eskenazi Brenda
†Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.
‡Université de Montréal Public Health Research Institute (IRSPUM), Université de Montréal, Montreal, Quebec H3T 1J4, Canada.
Environ Sci Technol. 2015 Mar 17;49(6):3940-8. doi: 10.1021/acs.est.5b00322. Epub 2015 Feb 27.
Study sample size in prospective birth cohorts of prenatal exposure to persistent organic pollutants (POPs) is limited by costs and logistics of follow-up. Increasing sample size at the time of health assessment would be beneficial if predictive tools could reliably back-extrapolate prenatal levels in newly enrolled children. We evaluated the performance of three approaches to back-extrapolate prenatal levels of p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (DDE) and four polybrominated diphenyl ether (PBDE) congeners from maternal and/or child levels 9 years after delivery: a pharmacokinetic model and predictive models using deletion/substitution/addition or Super Learner algorithms. Model performance was assessed using the root mean squared error (RMSE), R2, and slope and intercept of the back-extrapolated versus measured levels. Super Learner outperformed the other approaches with RMSEs of 0.10 to 0.31, R2s of 0.58 to 0.97, slopes of 0.42 to 0.93 and intercepts of 0.08 to 0.60. Typically, models performed better for p,p'-DDT/E than PBDE congeners. The pharmacokinetic model performed well when back-extrapolating prenatal levels from maternal levels for compounds with longer half-lives like p,p'-DDE and BDE-153. Results demonstrate the ability to reliably back-extrapolate prenatal POP levels from levels 9 years after delivery, with Super Learner performing best based on our fit criteria.
前瞻性出生队列中孕期暴露于持久性有机污染物(POPs)的研究样本量受到随访成本和后勤保障的限制。如果预测工具能够可靠地反向推算新入组儿童的产前暴露水平,那么在健康评估时增加样本量将是有益的。我们评估了三种从产后9年时的母亲和/或儿童水平反向推算对,对'-二氯二苯三氯乙烷(DDT)、对,对'-二氯二苯二氯乙烯(DDE)和四种多溴二苯醚(PBDE)同系物产前水平的方法:一种药代动力学模型以及使用删除/替换/添加或超级学习算法的预测模型。使用均方根误差(RMSE)、R2以及反向推算水平与实测水平的斜率和截距来评估模型性能。超级学习算法的表现优于其他方法,RMSE为0.10至0.31,R2为0.58至0.97,斜率为0.42至0.93,截距为0.08至0.60。通常,模型对对,对'-DDT/E的表现比对PBDE同系物更好。当从母亲水平反向推算具有较长半衰期的化合物(如对,对'-DDE和BDE-153)的产前水平时,药代动力学模型表现良好。结果表明能够从产后9年的水平可靠地反向推算产前POP水平,基于我们的拟合标准,超级学习算法表现最佳。