Suppr超能文献

拥有针对医学生的大规模指导计划的五年经验。

5 years of experience with a large-scale mentoring program for medical students.

作者信息

Pinilla Severin, Pander Tanja, von der Borch Philip, Fischer Martin R, Dimitriadis Konstantinos

机构信息

Ludwig-Maximilians-University Munich, Department of Neurology, Munich, Germany.

Ludwig Maximilians-Universität Munich, Institut für Didaktik und Ausbildungsforschung in der Medizin, Munich, Germany.

出版信息

GMS Z Med Ausbild. 2015 Feb 11;32(1):Doc5. doi: 10.3205/zma000947. eCollection 2015.

Abstract

In this paper we present our 5-year-experience with a large-scale mentoring program for undergraduate medical students at the Ludwig Maximilians-Universität Munich (LMU). We implemented a two-tiered program with a peer-mentoring concept for preclinical students and a 1:1-mentoring concept for clinical students aided by a fully automated online-based matching algorithm. Approximately 20-30% of each student cohort participates in our voluntary mentoring program. Defining ideal program evaluation strategies, recruiting mentors from beyond the academic environment and accounting for the mentoring network reality remain challenging. We conclude that a two-tiered program is well accepted by students and faculty. In addition the online-based matching seems to be effective for large-scale mentoring programs.

摘要

在本文中,我们介绍了我们在慕尼黑路德维希 - 马克西米利安大学(LMU)为本科医学生开展的大规模指导计划的5年经验。我们实施了一个两层计划,为临床前学生采用同伴指导概念,为临床学生采用一对一指导概念,并借助基于网络的全自动匹配算法。每个学生群体中约有20 - 30%参与我们的自愿指导计划。定义理想的计划评估策略、从学术环境之外招募导师以及考虑指导网络的实际情况仍然具有挑战性。我们得出结论,两层计划受到学生和教师的广泛接受。此外,基于网络的匹配对于大规模指导计划似乎是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bca/4330635/e6937e789217/ZMA-32-5-t-001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验