文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Potential dual imaging nanoparticle: Gd2O3 nanoparticle.

作者信息

Ahmad Md Wasi, Xu Wenlong, Kim Sung June, Baeck Jong Su, Chang Yongmin, Bae Ji Eun, Chae Kwon Seok, Park Ji Ae, Kim Tae Jeong, Lee Gang Ho

机构信息

Department of Chemistry, College of Natural Sciences, Kyungpook National University (KNU), Taegu 702-701, South Korea.

Department of Molecular Medicine and Medical &Biological Engineering, School of Medicine, KNU, Taegu 702-701, South Korea.

出版信息

Sci Rep. 2015 Feb 24;5:8549. doi: 10.1038/srep08549.


DOI:10.1038/srep08549
PMID:25707374
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4338476/
Abstract

Gadolinium (Gd) is a unique and powerful element in chemistry and biomedicine which can be applied simultaneously to magnetic resonance imaging (MRI), X-ray computed tomography (CT), and neutron capture therapy for cancers. This multifunctionality can be maximized using gadolinium oxide (Gd2O3) nanoparticles (GNPs) because of the large amount of Gd per GNP, making both diagnosis and therapy (i.e., theragnosis) for cancers possible using only GNPs. In this study, the T1 MRI and CT dual imaging capability of GNPs is explored by synthesizing various iodine compound (IC) coated GNPs (IC-GNPs). All the IC-GNP samples showed stronger X-ray absorption and larger longitudinal water proton relaxivities (r1 = 26-38 s(-1) mM(-1) and r2/r1 = 1.4-1.9) than the respective commercial contrast agents. In vivo T1 MR and CT images of mice were also acquired, supporting that the GNP is a potential dual imaging agent.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/513fbcd207bd/srep08549-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/0ff121194254/srep08549-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/d4e8d23e59a3/srep08549-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/8249c0e6196d/srep08549-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/770829408298/srep08549-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/dbe0e740c044/srep08549-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/fb25b0449b88/srep08549-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/9bfb19da0977/srep08549-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/cd098bd9573f/srep08549-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/79531babe0b6/srep08549-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/c28848c5fdda/srep08549-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/513fbcd207bd/srep08549-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/0ff121194254/srep08549-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/d4e8d23e59a3/srep08549-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/8249c0e6196d/srep08549-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/770829408298/srep08549-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/dbe0e740c044/srep08549-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/fb25b0449b88/srep08549-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/9bfb19da0977/srep08549-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/cd098bd9573f/srep08549-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/79531babe0b6/srep08549-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/c28848c5fdda/srep08549-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0611/4338476/513fbcd207bd/srep08549-f11.jpg

相似文献

[1]
Potential dual imaging nanoparticle: Gd2O3 nanoparticle.

Sci Rep. 2015-2-24

[2]
Ligand-size dependent water proton relaxivities in ultrasmall gadolinium oxide nanoparticles and in vivo T1 MR images in a 1.5 T MR field.

Phys Chem Chem Phys. 2014-10-7

[3]
Gadolinium oxide nanoparticles as potential multimodal imaging and therapeutic agents.

Curr Top Med Chem. 2013

[4]
Encapsulation of Gadolinium Oxide Nanoparticle (GdO) Contrasting Agents in PAMAM Dendrimer Templates for Enhanced Magnetic Resonance Imaging in Vivo.

ACS Appl Mater Interfaces. 2017-2-20

[5]
Hydrophilic Biocompatible Poly(Acrylic Acid-co-Maleic Acid) Polymer as a Surface-Coating Ligand of Ultrasmall GdO Nanoparticles to Obtain a High r Value and T MR Images.

Diagnostics (Basel). 2020-12-22

[6]
Magnetic resonance imaging, gadolinium neutron capture therapy, and tumor cell detection using ultrasmall GdO nanoparticles coated with polyacrylic acid-rhodamine B as a multifunctional tumor theragnostic agent.

RSC Adv. 2018-4-3

[7]
Dual-mode T1 and T2 magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, and in vivo application.

Nanotechnology. 2015-9-11

[8]
High relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging.

Adv Healthc Mater. 2013-5-13

[9]
Core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual modal MRI contrast agents.

Nanoscale. 2016-6-14

[10]
Manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T1-weighted MR imaging.

Biomaterials. 2013-11-26

引用本文的文献

[1]
Multimodal imaging approach to track theranostic nanoparticle accumulation in glioblastoma with magnetic resonance imaging and intravital microscopy.

Nanoscale. 2025-4-17

[2]
Multienergy cardiovascular CT imaging: current state and future.

Br J Radiol. 2025-3-1

[3]
Application of rare earth elements in dual-modality molecular probes.

RSC Adv. 2024-12-5

[4]
Heavy Metal-Based Nanoparticles as High-Performance X-ray Computed Tomography Contrast Agents.

Pharmaceuticals (Basel). 2023-10-15

[5]
Combined Gadolinium and Boron Neutron Capture Therapies for Eradication of Head-and-Neck Tumor Using GdB Nanoparticles under MRI/CT Image Guidance.

JACS Au. 2023-8-4

[6]
Chitosan-Imidazolium Core-Shell Nanoparticles of Gd-Mn-Mo Polyoxometalate as Novel Potential MRI Nano-Agent for Breast Cancer Detection.

Micromachines (Basel). 2023-3-27

[7]
Dual Labeling of Primary Cells with Fluorescent Gadolinium Oxide Nanoparticles.

Nanomaterials (Basel). 2023-6-16

[8]
Facile Synthesis and X-ray Attenuation Properties of Ultrasmall Platinum Nanoparticles Grafted with Three Types of Hydrophilic Polymers.

Nanomaterials (Basel). 2023-2-22

[9]
Nanomaterial-based CT contrast agents and their applications in image-guided therapy.

Theranostics. 2023

[10]
New Gd and Mn-Co-Doped Scheelite-Type Ceramics-Their Structural, Optical and Magnetic Properties.

Int J Mol Sci. 2022-12-12

本文引用的文献

[1]
Ligand-size dependent water proton relaxivities in ultrasmall gadolinium oxide nanoparticles and in vivo T1 MR images in a 1.5 T MR field.

Phys Chem Chem Phys. 2014-10-7

[2]
Gadolinium oxide nanoparticles as potential multimodal imaging and therapeutic agents.

Curr Top Med Chem. 2013

[3]
X-ray-computed tomography contrast agents.

Chem Rev. 2013-3-13

[4]
Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer.

Radiat Oncol. 2012-8-29

[5]
Paramagnetic nanoparticle T1 and T2 MRI contrast agents.

Phys Chem Chem Phys. 2012-10-5

[6]
Nanoparticles as computed tomography contrast agents: current status and future perspectives.

Nanomedicine (Lond). 2012-2

[7]
Contrast-induced kidney injury: mechanisms, risk factors, and prevention.

Eur Heart J. 2012-1-19

[8]
Multifunctional nanoparticles for multimodal imaging and theragnosis.

Chem Soc Rev. 2011-12-21

[9]
High-sensitivity nanosensors for biomarker detection.

Chem Soc Rev. 2011-12-20

[10]
The golden age: gold nanoparticles for biomedicine.

Chem Soc Rev. 2011-11-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索