Mhuantong Wuttichai, Charoensawan Varodom, Kanokratana Pattanop, Tangphatsornruang Sithichoke, Champreda Verawat
Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani, 12120 Thailand.
Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ; Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170 Thailand.
Biotechnol Biofuels. 2015 Feb 8;8:16. doi: 10.1186/s13068-015-0200-8. eCollection 2015.
As one of the most abundant agricultural wastes, sugarcane bagasse is largely under-exploited, but it possesses a great potential for the biofuel, fermentation, and cellulosic biorefinery industries. It also provides a unique ecological niche, as the microbes in this lignocellulose-rich environment thrive in relatively high temperatures (50°C) with varying microenvironments of aerobic surface to anoxic interior. The microbial community in bagasse thus presents a good resource for the discovery and characterization of new biomass-degrading enzymes; however, it remains largely unexplored.
We have constructed a fosmid library of sugarcane bagasse and obtained the largest bagasse metagenome to date. A taxonomic classification of the bagasse metagenome reviews the predominance of Proteobacteria, which are also found in high abundance in other aerobic environments. Based on the functional characterization of biomass-degrading enzymes, we have demonstrated that the bagasse microbial community benefits from a large repertoire of lignocellulolytic enzymes, which allows them to digest different components of lignocelluoses into single molecule sugars. Comparative genomic analyses with other lignocellulolytic and non-lignocellulolytic metagenomes show that microbial communities are taxonomically separable by their aerobic "open" or anoxic "closed" environments. Importantly, a functional analysis of lignocellulose-active genes (based on the CAZy classifications) reveals core enzymes highly conserved within the lignocellulolytic group, regardless of their taxonomic compositions. Cellulases, in particular, are markedly more pronounced compared to the non-lignocellulolytic group. In addition to the core enzymes, the bagasse fosmid library also contains some uniquely enriched glycoside hydrolases, as well as a large repertoire of the newly defined auxiliary activity proteins.
Our study demonstrates a conservation and diversification of carbohydrate-active genes among diverse microbial species in different biomass-degrading niches, and signifies the importance of taking a global approach to functionally investigate a microbial community as a whole, as compared to focusing on individual organisms.
甘蔗渣作为最丰富的农业废弃物之一,目前在很大程度上未得到充分利用,但它在生物燃料、发酵和纤维素生物精炼行业具有巨大潜力。它还提供了一个独特的生态位,因为在这种富含木质纤维素的环境中的微生物在相对较高的温度(50°C)下,在从有氧表面到缺氧内部的不同微环境中茁壮成长。因此,甘蔗渣中的微生物群落是发现和鉴定新型生物质降解酶的良好资源;然而,它在很大程度上仍未被探索。
我们构建了一个甘蔗渣的fosmid文库,并获得了迄今为止最大的甘蔗渣宏基因组。对甘蔗渣宏基因组的分类学分析表明,变形菌门占主导地位,在其他需氧环境中也大量存在。基于对生物质降解酶的功能表征,我们证明了甘蔗渣微生物群落受益于大量的木质纤维素分解酶,这些酶使它们能够将木质纤维素的不同成分分解为单分子糖。与其他木质纤维素分解和非木质纤维素分解宏基因组的比较基因组分析表明,微生物群落可根据其需氧“开放”或缺氧“封闭”环境在分类学上区分开来。重要的是,基于CAZy分类对木质纤维素活性基因的功能分析揭示了木质纤维素分解组内高度保守的核心酶,无论其分类组成如何。特别是纤维素酶,与非木质纤维素分解组相比更为明显。除了核心酶外,甘蔗渣fosmid文库还包含一些独特富集的糖苷水解酶,以及大量新定义的辅助活性蛋白。
我们的研究证明了不同生物质降解生态位中不同微生物物种之间碳水化合物活性基因的保守性和多样性,并表明与关注单个生物体相比,采用全局方法对整个微生物群落进行功能研究的重要性。