Suppr超能文献

通过电穿孔实现荧光生物分子在活微生物中的内化与观察。

Internalization and observation of fluorescent biomolecules in living microorganisms via electroporation.

作者信息

Aigrain Louise, Sustarsic Marko, Crawford Robert, Plochowietz Anne, Kapanidis Achillefs N

机构信息

Clarendon Laboratory, Department of Physics, University of Oxford; Wellcome Trust Sanger Institute, Genome Center.

Clarendon Laboratory, Department of Physics, University of Oxford.

出版信息

J Vis Exp. 2015 Feb 8(96):52208. doi: 10.3791/52208.

Abstract

The ability to study biomolecules in vivo is crucial for understanding their function in a biological context. One powerful approach involves fusing molecules of interest to fluorescent proteins such as GFP to study their expression, localization and function. However, GFP and its derivatives are significantly larger and less photostable than organic fluorophores generally used for in vitro experiments, and this can limit the scope of investigation. We recently introduced a straightforward, versatile and high-throughput method based on electroporation, allowing the internalization of biomolecules labeled with organic fluorophores into living microorganisms. Here we describe how to use electroporation to internalize labeled DNA fragments or proteins into Escherichia coli and Saccharomyces cerevisiæ, how to quantify the number of internalized molecules using fluorescence microscopy, and how to quantify the viability of electroporated cells. Data can be acquired at the single-cell or single-molecule level using fluorescence or FRET. The possibility of internalizing non-labeled molecules that trigger a physiological observable response in vivo is also presented. Finally, strategies of optimization of the protocol for specific biological systems are discussed.

摘要

在体内研究生物分子的能力对于理解它们在生物学环境中的功能至关重要。一种强大的方法是将感兴趣的分子与荧光蛋白(如绿色荧光蛋白)融合,以研究它们的表达、定位和功能。然而,绿色荧光蛋白及其衍生物比通常用于体外实验的有机荧光团要大得多,且光稳定性较差,这可能会限制研究范围。我们最近引入了一种基于电穿孔的简单、通用且高通量的方法,可使标记有有机荧光团的生物分子内化到活的微生物中。在此,我们描述如何使用电穿孔将标记的DNA片段或蛋白质内化到大肠杆菌和酿酒酵母中,如何使用荧光显微镜定量内化分子的数量,以及如何定量电穿孔细胞的活力。可以使用荧光或荧光共振能量转移在单细胞或单分子水平获取数据。还介绍了内化在体内引发生理可观察反应的未标记分子的可能性。最后,讨论了针对特定生物系统优化该方案的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验