Suppr超能文献

高多重化的细胞内 RNA 原位测序。

Highly multiplexed subcellular RNA sequencing in situ.

机构信息

Wyss Institute, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Science. 2014 Mar 21;343(6177):1360-3. doi: 10.1126/science.1250212. Epub 2014 Feb 27.

Abstract

Understanding the spatial organization of gene expression with single-nucleotide resolution requires localizing the sequences of expressed RNA transcripts within a cell in situ. Here, we describe fluorescent in situ RNA sequencing (FISSEQ), in which stably cross-linked complementary DNA (cDNA) amplicons are sequenced within a biological sample. Using 30-base reads from 8102 genes in situ, we examined RNA expression and localization in human primary fibroblasts with a simulated wound-healing assay. FISSEQ is compatible with tissue sections and whole-mount embryos and reduces the limitations of optical resolution and noisy signals on single-molecule detection. Our platform enables massively parallel detection of genetic elements, including gene transcripts and molecular barcodes, and can be used to investigate cellular phenotype, gene regulation, and environment in situ.

摘要

要了解基因表达的空间组织,需要以单核苷酸分辨率定位细胞内表达的 RNA 转录本序列。在这里,我们描述了荧光原位 RNA 测序(FISSEQ),其中在生物样本内对稳定交联的互补 DNA(cDNA)扩增子进行测序。使用来自原位 8102 个基因的 30 个碱基读长,我们使用模拟伤口愈合测定法检查了人原代成纤维细胞中的 RNA 表达和定位。FISSEQ 与组织切片和整个胚胎兼容,并减少了单个分子检测中光学分辨率和嘈杂信号的限制。我们的平台可以实现遗传元件(包括基因转录本和分子条形码)的大规模并行检测,并可用于原位研究细胞表型、基因调控和环境。

相似文献

1
Highly multiplexed subcellular RNA sequencing in situ.
Science. 2014 Mar 21;343(6177):1360-3. doi: 10.1126/science.1250212. Epub 2014 Feb 27.
2
Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues.
Nat Protoc. 2015 Mar;10(3):442-58. doi: 10.1038/nprot.2014.191. Epub 2015 Feb 12.
3
Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression.
Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19490-19499. doi: 10.1073/pnas.1912459116. Epub 2019 Sep 9.
4
RNA-Seq: a method for comprehensive transcriptome analysis.
Curr Protoc Mol Biol. 2010 Jan;Chapter 4:Unit 4.11.1-13. doi: 10.1002/0471142727.mb0411s89.
5
The transcriptional landscape of Chlamydia pneumoniae.
Genome Biol. 2011 Oct 11;12(10):R98. doi: 10.1186/gb-2011-12-10-r98.
6
Visualization and analysis of gene expression in tissue sections by spatial transcriptomics.
Science. 2016 Jul 1;353(6294):78-82. doi: 10.1126/science.aaf2403.
7
C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution.
Nat Commun. 2019 Jan 21;10(1):360. doi: 10.1038/s41467-018-08126-5.
8
Rare Cell Detection by Single-Cell RNA Sequencing as Guided by Single-Molecule RNA FISH.
Cell Syst. 2018 Feb 28;6(2):171-179.e5. doi: 10.1016/j.cels.2018.01.014. Epub 2018 Feb 14.
9
Sequencing and characterization of the guppy (Poecilia reticulata) transcriptome.
BMC Genomics. 2011 Apr 20;12:202. doi: 10.1186/1471-2164-12-202.
10
Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes.
Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1347-52. doi: 10.1073/pnas.1118018109. Epub 2012 Jan 9.

引用本文的文献

2
LOCAS: multilabel mRNA localization with supervised contrastive learning.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf441.
3
Cryosectioning-enhanced super-resolution microscopy for single-protein imaging across cells and tissues.
Proc Natl Acad Sci U S A. 2025 Aug 12;122(32):e2504578122. doi: 10.1073/pnas.2504578122. Epub 2025 Aug 7.
4
Spatial Proofreading Amplification of Transcript and Protein Signals.
bioRxiv. 2025 Jun 15:2025.06.11.659176. doi: 10.1101/2025.06.11.659176.
5
DSCT: a novel deep-learning framework for rapid and accurate spatial transcriptomic cell typing.
Natl Sci Rev. 2025 Jan 28;12(5):nwaf030. doi: 10.1093/nsr/nwaf030. eCollection 2025 May.
6
Single-Cell Multi-Omics: Insights into Therapeutic Innovations to Advance Treatment in Cancer.
Int J Mol Sci. 2025 Mar 9;26(6):2447. doi: 10.3390/ijms26062447.
7
Advancements in pathology: Digital transformation, precision medicine, and beyond.
J Pathol Inform. 2024 Nov 19;16:100408. doi: 10.1016/j.jpi.2024.100408. eCollection 2025 Jan.
8
Decoding subcellular RNA localization one molecule at a time.
Genome Biol. 2025 Mar 3;26(1):45. doi: 10.1186/s13059-025-03507-8.
9
From morphology to single-cell molecules: high-resolution 3D histology in biomedicine.
Mol Cancer. 2025 Mar 3;24(1):63. doi: 10.1186/s12943-025-02240-x.

本文引用的文献

1
In situ sequencing for RNA analysis in preserved tissue and cells.
Nat Methods. 2013 Sep;10(9):857-60. doi: 10.1038/nmeth.2563. Epub 2013 Jul 14.
3
Validating transcripts with probes and imaging technology.
Nat Methods. 2011 Apr;8(4 Suppl):S12-9. doi: 10.1038/nmeth.1573. Epub 2011 Mar 30.
4
A high-resolution anatomical atlas of the transcriptome in the mouse embryo.
PLoS Biol. 2011 Jan 18;9(1):e1000582. doi: 10.1371/journal.pbio.1000582.
6
Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays.
Science. 2010 Jan 1;327(5961):78-81. doi: 10.1126/science.1181498. Epub 2009 Nov 5.
7
Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human.
Nat Methods. 2009 Aug;6(8):613-8. doi: 10.1038/nmeth.1357. Epub 2009 Jul 20.
9
Imaging individual mRNA molecules using multiple singly labeled probes.
Nat Methods. 2008 Oct;5(10):877-9. doi: 10.1038/nmeth.1253. Epub 2008 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验