Suppr超能文献

基于贝叶斯网络和图搜索的血管内光学相干断层扫描中三维支架检测

3-D Stent Detection in Intravascular OCT Using a Bayesian Network and Graph Search.

作者信息

Jenkins Michael W, Linderman George C, Bezerra Hiram G, Fujino Yusuke, Costa Marco A, Wilson David L, Rollins Andrew M

出版信息

IEEE Trans Med Imaging. 2015 Jul;34(7):1549-1561. doi: 10.1109/TMI.2015.2405341. Epub 2015 Feb 24.

Abstract

Worldwide, many hundreds of thousands of stents are implanted each year to revascularize occlusions in coronary arteries. Intravascular optical coherence tomography is an important emerging imaging technique, which has the resolution and contrast necessary to quantitatively analyze stent deployment and tissue coverage following stent implantation. Automation is needed, as current, it takes up to 16 h to manually analyze hundreds of images and thousands of stent struts from a single pullback. For automated strut detection, we used image formation physics and machine learning via a Bayesian network, and 3-D knowledge of stent structure via graph search. Graph search was done on en face projections using minimum spanning tree algorithms. Depths of all struts in a pullback were simultaneously determined using graph cut. To assess the method, we employed the largest validation data set used so far, involving more than 8000 clinical images from 103 pullbacks from 72 patients. Automated strut detection achieved a 0.91±0.04 recall, and 0.84±0.08 precision. Performance was robust in images of varying quality. This method can improve the workflow for analysis of stent clinical trial data, and can potentially be used in the clinic to facilitate real-time stent analysis and visualization, aiding stent implantation.

摘要

在全球范围内,每年都有成千上万的支架被植入以恢复冠状动脉闭塞处的血运重建。血管内光学相干断层扫描是一种重要的新兴成像技术,它具有定量分析支架植入后支架展开和组织覆盖情况所需的分辨率和对比度。由于目前手动分析一次回撤中的数百张图像和数千个支架支柱需要长达16小时,因此需要自动化。对于自动支柱检测,我们通过贝叶斯网络利用图像形成物理学和机器学习,并通过图搜索利用支架结构的三维知识。使用最小生成树算法在正面投影上进行图搜索。使用图割同时确定一次回撤中所有支柱的深度。为了评估该方法,我们采用了迄今为止使用的最大验证数据集,该数据集涉及来自72名患者的103次回撤中的8000多张临床图像。自动支柱检测的召回率为0.91±0.04,精度为0.84±0.08。在不同质量的图像中性能都很稳健。该方法可以改进支架临床试验数据分析的工作流程,并有可能在临床上用于促进实时支架分析和可视化,辅助支架植入。

相似文献

2
Stent detection with very thick tissue coverage in intravascular OCT.血管内光学相干断层扫描中对组织覆盖极厚情况的支架检测
Biomed Opt Express. 2021 Nov 11;12(12):7500-7516. doi: 10.1364/BOE.444336. eCollection 2021 Dec 1.

引用本文的文献

6
Stent detection with very thick tissue coverage in intravascular OCT.血管内光学相干断层扫描中对组织覆盖极厚情况的支架检测
Biomed Opt Express. 2021 Nov 11;12(12):7500-7516. doi: 10.1364/BOE.444336. eCollection 2021 Dec 1.

本文引用的文献

9
Automatic segmentation of the wire frame of stent grafts from CT data.自动从 CT 数据中分割支架移植物的线框。
Med Image Anal. 2012 Jan;16(1):127-39. doi: 10.1016/j.media.2011.05.015. Epub 2011 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验