Liu Suqin, Wang Hongjiang, Zhang Lizhi, Tang Chuanning, Jones Lindsey, Ye Hua, Ban Liying, Wang Aman, Liu Zhiyuan, Lou Feng, Zhang Dandan, Sun Hong, Dong Haichao, Zhang Guangchun, Dong Zhishou, Guo Baishuai, Yan He, Yan Chaowei, Wang Lu, Su Ziyi, Li Yangyang, Huang Xue F, Chen Si-Yi, Zhou Tao
The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
San Valley Biotechnology Incorporated, Beijing, China.
Hum Genomics. 2015 Feb 8;9(1):2. doi: 10.1186/s40246-015-0024-4.
Breast cancer is the most common malignancy in women and the leading cause of cancer deaths in women worldwide. Breast cancers are heterogenous and exist in many different subtypes (luminal A, luminal B, triple negative, and human epidermal growth factor receptor 2 (HER2) overexpressing), and each subtype displays distinct characteristics, responses to treatment, and patient outcomes. In addition to varying immunohistochemical properties, each subtype contains a distinct gene mutation profile which has yet to be fully defined. Patient treatment is currently guided by hormone receptor status and HER2 expression, but accumulating evidence suggests that genetic mutations also influence drug responses and patient survival. Thus, identifying the unique gene mutation pattern in each breast cancer subtype will further improve personalized treatment and outcomes for breast cancer patients. In this study, we used the Ion Personal Genome Machine (PGM) and Ion Torrent AmpliSeq Cancer Panel to sequence 737 mutational hotspot regions from 45 cancer-related genes to identify genetic mutations in 80 breast cancer samples of various subtypes from Chinese patients. Analysis revealed frequent missense and combination mutations in PIK3CA and TP53, infrequent mutations in PTEN, and uncommon combination mutations in luminal-type cancers in other genes including BRAF, GNAS, IDH1, and KRAS. This study demonstrates the feasibility of using Ion Torrent sequencing technology to reliably detect gene mutations in a clinical setting in order to guide personalized drug treatments or combination therapies to ultimately target individual, breast cancer-specific mutations.
乳腺癌是女性中最常见的恶性肿瘤,也是全球女性癌症死亡的主要原因。乳腺癌具有异质性,存在许多不同的亚型(腔面A型、腔面B型、三阴性以及人表皮生长因子受体2(HER2)过表达型),且每种亚型都表现出独特的特征、对治疗的反应以及患者预后。除了不同的免疫组化特性外,每种亚型还包含尚未完全明确的独特基因突变谱。目前患者的治疗是依据激素受体状态和HER2表达来指导的,但越来越多的证据表明基因突变也会影响药物反应和患者生存。因此,确定每种乳腺癌亚型中独特的基因突变模式将进一步改善乳腺癌患者的个性化治疗及预后。在本研究中,我们使用Ion Personal Genome Machine(PGM)和Ion Torrent AmpliSeq Cancer Panel对45个癌症相关基因的737个突变热点区域进行测序,以鉴定来自中国患者的80个不同亚型乳腺癌样本中的基因突变。分析显示,PIK3CA和TP53中存在频繁的错义突变和组合突变,PTEN中存在罕见突变,而在腔面型癌症中,BRAF、GNAS、IDH1和KRAS等其他基因存在不常见的组合突变。本研究证明了使用Ion Torrent测序技术在临床环境中可靠检测基因突变以指导个性化药物治疗或联合治疗,最终靶向个体乳腺癌特异性突变的可行性。