Litts Katie M, Messinger Jeffrey D, Freund K Bailey, Zhang Yuhua, Curcio Christine A
Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, Alabama, United States 2Vision Science Graduate Program, University of Alabama at Birmingham, Birmingham, Alabama, United States.
Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, Alabama, United States.
Invest Ophthalmol Vis Sci. 2015 Apr;56(4):2243-53. doi: 10.1167/iovs.14-15838.
To quantify impressions of mitochondrial translocation in degenerating cones and to determine the nature of accumulated material in the subretinal space with apparent inner segment (IS)-like features by examining cone IS ultrastructure.
Human donor eyes with advanced age-related macular degeneration (AMD) were screened for outer retinal tubulation (ORT) in macula-wide, high-resolution digital sections. Degenerating cones inside ORT (ORT cones) and outside ORT (non-ORT cones) from AMD eyes and unaffected cones in age-matched control eyes were imaged using transmission electron microscopy. The distances of mitochondria to the external limiting membrane (ELM), cone IS length, and cone IS width at the ELM were measured.
Outer retinal tubulation and non-ORT cones lose outer segments (OS), followed by shortening of IS and mitochondria. In non-ORT cones, IS broaden. Outer retinal tubulation and non-ORT cone IS myoids become undetectable due to mitochondria redistribution toward the nucleus. Some ORT cones were found lacking IS and containing mitochondria in the outer fiber (between soma and ELM). Unlike long, thin IS mitochondria in control cones, ORT and non-ORT IS mitochondria are ovoid or reniform. Shed IS, some containing mitochondria, were found in the subretinal space.
In AMD, macula cones exhibit loss of detectable myoid due to IS shortening in addition to OS loss, as described. Mitochondria shrink and translocate toward the nucleus. As reflectivity sources, translocating mitochondria may be detectable using in vivo imaging to monitor photoreceptor degeneration in retinal disorders. These results improve the knowledge basis for interpreting high-resolution clinical retinal imaging.
通过检查视锥细胞内节超微结构,量化退化视锥细胞中线粒体易位的情况,并确定视网膜下间隙中具有明显内节(IS)样特征的积聚物质的性质。
对患有晚期年龄相关性黄斑变性(AMD)的人类供体眼进行黄斑区全视野、高分辨率数字切片检查,筛选外层视网膜管状化(ORT)情况。使用透射电子显微镜对AMD眼中ORT内部的退化视锥细胞(ORT视锥细胞)和ORT外部的退化视锥细胞(非ORT视锥细胞)以及年龄匹配对照眼中未受影响的视锥细胞进行成像。测量线粒体到外界膜(ELM)的距离、视锥细胞内节长度以及ELM处视锥细胞内节宽度。
外层视网膜管状化和非ORT视锥细胞失去外节(OS),随后内节和线粒体缩短。在非ORT视锥细胞中,内节变宽。由于线粒体向细胞核重新分布,外层视网膜管状化和非ORT视锥细胞的内节肌样体变得不可见。发现一些ORT视锥细胞缺乏内节,在外纤维(胞体和ELM之间)含有线粒体。与对照视锥细胞中细长的内节线粒体不同,ORT和非ORT视锥细胞的内节线粒体呈卵形或肾形。在视网膜下间隙发现了脱落的内节,有些含有线粒体。
在AMD中,如所述,黄斑视锥细胞除了失去外节外,还因内节缩短而表现出可检测到的肌样体丧失。线粒体收缩并向细胞核易位。作为反射源,易位的线粒体可通过体内成像检测,以监测视网膜疾病中光感受器的退化。这些结果为解释高分辨率临床视网膜成像提供了知识基础。