Suppr超能文献

高度聚乙二醇化的DNA纳米颗粒在大脑中提供均匀且广泛的基因转移。

Highly PEGylated DNA Nanoparticles Provide Uniform and Widespread Gene Transfer in the Brain.

作者信息

Mastorakos Panagiotis, Zhang Clark, Berry Sneha, Oh Yumin, Lee Seulki, Eberhart Charles G, Woodworth Graeme F, Suk Jung Soo, Hanes Justin

机构信息

Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21231, USA.

Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21297, USA.

出版信息

Adv Healthc Mater. 2015 May;4(7):1023-33. doi: 10.1002/adhm.201400800. Epub 2015 Mar 11.

Abstract

Gene delivery to the central nervous system (CNS) has potential as a means for treating numerous debilitating neurological diseases. Nonviral gene vector platforms are tailorable and can overcome key limitations intrinsic to virus-mediated delivery; however, lack of clinical efficacy with nonviral systems to date may be attributed to limited gene vector dispersion and transfection in vivo. It is shown that the brain extracellular matrix (ECM) strongly limits penetration of polymer-based gene vector nanoparticles (NP) through the brain parenchyma, even when they are very small (<60 nm) and coated with a polyethylene glycol (PEG) corona of typical density. Following convection enhanced delivery (CED), conventional gene vectors are confined to the injection site, presumably by adhesive interactions with the brain ECM and do not provide gene expression beyond the point of administration. In contrast, it is found that incorporating highly PEGylated polymers allows the production of compacted (≈43 nm) and colloidally stable DNA NP that avoid adhesive trapping within the brain parenchyma. When administered by CED into the rat striatum, highly PEGylated DNA NP distribute throughout and provide broad transgene expression without vector-induced toxicity. The use of these brain-penetrating gene vectors, in conjunction with CED, offers an avenue to improve gene therapy for CNS diseases.

摘要

基因传递至中枢神经系统(CNS)具有作为治疗多种使人衰弱的神经疾病手段的潜力。非病毒基因载体平台具有可定制性,并且能够克服病毒介导传递所固有的关键限制;然而,迄今为止非病毒系统缺乏临床疗效可能归因于基因载体在体内的分散和转染受限。研究表明,脑细胞外基质(ECM)强烈限制基于聚合物的基因载体纳米颗粒(NP)穿透脑实质,即使它们非常小(<60 nm)并且包覆有典型密度的聚乙二醇(PEG)冠层。在对流增强递送(CED)之后,传统基因载体局限于注射部位,推测是由于与脑ECM的粘附相互作用,并且在给药点之外不提供基因表达。相比之下,研究发现掺入高度聚乙二醇化的聚合物能够产生紧密的(≈43 nm)且胶体稳定的DNA NP,其可避免在脑实质内被粘附捕获。当通过CED给予大鼠纹状体时,高度聚乙二醇化的DNA NP能够在整个区域分布并提供广泛的转基因表达,而无载体诱导的毒性。使用这些脑穿透性基因载体并结合CED,为改善中枢神经系统疾病的基因治疗提供了一条途径。

相似文献

1
Highly PEGylated DNA Nanoparticles Provide Uniform and Widespread Gene Transfer in the Brain.
Adv Healthc Mater. 2015 May;4(7):1023-33. doi: 10.1002/adhm.201400800. Epub 2015 Mar 11.
2
Biodegradable DNA Nanoparticles that Provide Widespread Gene Delivery in the Brain.
Small. 2016 Feb 3;12(5):678-85. doi: 10.1002/smll.201502554. Epub 2015 Dec 17.
3
Widespread gene transfer to malignant gliomas with In vitro-to-In vivo correlation.
J Control Release. 2019 Jun 10;303:1-11. doi: 10.1016/j.jconrel.2019.04.010. Epub 2019 Apr 9.
4
Biodegradable brain-penetrating DNA nanocomplexes and their use to treat malignant brain tumors.
J Control Release. 2017 Sep 28;262:37-46. doi: 10.1016/j.jconrel.2017.07.009. Epub 2017 Jul 8.
6
Strategies to enhance the distribution of nanotherapeutics in the brain.
J Control Release. 2017 Dec 10;267:232-239. doi: 10.1016/j.jconrel.2017.07.028. Epub 2017 Jul 21.
7
Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound.
J Control Release. 2016 Feb 10;223:109-117. doi: 10.1016/j.jconrel.2015.12.034. Epub 2015 Dec 28.
8
PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy.
J Control Release. 2018 Sep 10;285:35-45. doi: 10.1016/j.jconrel.2018.07.001. Epub 2018 Jul 3.
9
DNA nanoparticles: detection of long-term transgene activity in brain using bioluminescence imaging.
Mol Imaging. 2011 Oct;10(5):327-39. doi: 10.2310/7290.2010.00053. Epub 2011 Apr 27.
10
Arginine-rich polyplexes for gene delivery to neuronal cells.
Biomaterials. 2015 Aug;60:151-60. doi: 10.1016/j.biomaterials.2015.04.052. Epub 2015 May 22.

引用本文的文献

1
Delivery of monoclonal antibodies to the brain: the impact of nanocarrier structure.
Drug Deliv Transl Res. 2025 Sep 2. doi: 10.1007/s13346-025-01957-y.
3
Recent advances in nanoparticulate RNA delivery systems.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2307798120. doi: 10.1073/pnas.2307798120. Epub 2024 Mar 4.
4
Adverse Effects of Non-Metallic Nanoparticles in the Central Nervous System.
Materials (Basel). 2023 Nov 21;16(23):7264. doi: 10.3390/ma16237264.
5
Lipid Nanoparticles Deliver mRNA to the Brain after an Intracerebral Injection.
Biochemistry. 2023 Dec 19;62(24):3533-3547. doi: 10.1021/acs.biochem.3c00371. Epub 2023 Sep 20.
6
Bioreducible Gene Delivery Platform that Promotes Intracellular Payload Release and Widespread Brain Dispersion.
ACS Biomater Sci Eng. 2023 Aug 14;9(8):4567-4572. doi: 10.1021/acsbiomaterials.3c00799. Epub 2023 Jul 31.
7
Cracking Brain Diseases from Gut Microbes-Mediated Metabolites for Precise Treatment.
Int J Biol Sci. 2023 Jun 4;19(10):2974-2998. doi: 10.7150/ijbs.85259. eCollection 2023.
8
Polymer-Based mRNA Delivery Strategies for Advanced Therapies.
Adv Healthc Mater. 2023 Jun;12(15):e2202688. doi: 10.1002/adhm.202202688. Epub 2023 Feb 27.
9
Polymer nanocarriers for targeted local delivery of agents in treating brain tumors.
Nanotechnology. 2022 Dec 2;34(7). doi: 10.1088/1361-6528/ac9683.
10
Delivering Multifunctional Peptide-Conjugated Gene Carrier/miRNA-218 Complexes from Monodisperse Microspheres for Bone Regeneration.
ACS Appl Mater Interfaces. 2022 Sep 28;14(38):42904-42914. doi: 10.1021/acsami.2c10728. Epub 2022 Sep 14.

本文引用的文献

1
Human serum albumin-based nanoparticle-mediated in vitro gene delivery.
PLoS One. 2014 Sep 17;9(9):e107603. doi: 10.1371/journal.pone.0107603. eCollection 2014.
4
Estimating the effective density of engineered nanomaterials for in vitro dosimetry.
Nat Commun. 2014 Mar 28;5:3514. doi: 10.1038/ncomms4514.
7
Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier.
J Control Release. 2014 Mar 28;178:8-17. doi: 10.1016/j.jconrel.2014.01.007. Epub 2014 Jan 14.
8
A nanoparticle formulation that selectively transfects metastatic tumors in mice.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14717-22. doi: 10.1073/pnas.1313330110. Epub 2013 Aug 19.
9
Multifunctional receptor-targeted nanocomplexes for the delivery of therapeutic nucleic acids to the brain.
Biomaterials. 2013 Dec;34(36):9190-200. doi: 10.1016/j.biomaterials.2013.07.081. Epub 2013 Aug 12.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验