Suppr超能文献

高度聚乙二醇化的DNA纳米颗粒在大脑中提供均匀且广泛的基因转移。

Highly PEGylated DNA Nanoparticles Provide Uniform and Widespread Gene Transfer in the Brain.

作者信息

Mastorakos Panagiotis, Zhang Clark, Berry Sneha, Oh Yumin, Lee Seulki, Eberhart Charles G, Woodworth Graeme F, Suk Jung Soo, Hanes Justin

机构信息

Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21231, USA.

Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21297, USA.

出版信息

Adv Healthc Mater. 2015 May;4(7):1023-33. doi: 10.1002/adhm.201400800. Epub 2015 Mar 11.

Abstract

Gene delivery to the central nervous system (CNS) has potential as a means for treating numerous debilitating neurological diseases. Nonviral gene vector platforms are tailorable and can overcome key limitations intrinsic to virus-mediated delivery; however, lack of clinical efficacy with nonviral systems to date may be attributed to limited gene vector dispersion and transfection in vivo. It is shown that the brain extracellular matrix (ECM) strongly limits penetration of polymer-based gene vector nanoparticles (NP) through the brain parenchyma, even when they are very small (<60 nm) and coated with a polyethylene glycol (PEG) corona of typical density. Following convection enhanced delivery (CED), conventional gene vectors are confined to the injection site, presumably by adhesive interactions with the brain ECM and do not provide gene expression beyond the point of administration. In contrast, it is found that incorporating highly PEGylated polymers allows the production of compacted (≈43 nm) and colloidally stable DNA NP that avoid adhesive trapping within the brain parenchyma. When administered by CED into the rat striatum, highly PEGylated DNA NP distribute throughout and provide broad transgene expression without vector-induced toxicity. The use of these brain-penetrating gene vectors, in conjunction with CED, offers an avenue to improve gene therapy for CNS diseases.

摘要

基因传递至中枢神经系统(CNS)具有作为治疗多种使人衰弱的神经疾病手段的潜力。非病毒基因载体平台具有可定制性,并且能够克服病毒介导传递所固有的关键限制;然而,迄今为止非病毒系统缺乏临床疗效可能归因于基因载体在体内的分散和转染受限。研究表明,脑细胞外基质(ECM)强烈限制基于聚合物的基因载体纳米颗粒(NP)穿透脑实质,即使它们非常小(<60 nm)并且包覆有典型密度的聚乙二醇(PEG)冠层。在对流增强递送(CED)之后,传统基因载体局限于注射部位,推测是由于与脑ECM的粘附相互作用,并且在给药点之外不提供基因表达。相比之下,研究发现掺入高度聚乙二醇化的聚合物能够产生紧密的(≈43 nm)且胶体稳定的DNA NP,其可避免在脑实质内被粘附捕获。当通过CED给予大鼠纹状体时,高度聚乙二醇化的DNA NP能够在整个区域分布并提供广泛的转基因表达,而无载体诱导的毒性。使用这些脑穿透性基因载体并结合CED,为改善中枢神经系统疾病的基因治疗提供了一条途径。

相似文献

3
Widespread gene transfer to malignant gliomas with In vitro-to-In vivo correlation.肿瘤内和肿瘤间基因转移的广泛相关性。
J Control Release. 2019 Jun 10;303:1-11. doi: 10.1016/j.jconrel.2019.04.010. Epub 2019 Apr 9.
6
Strategies to enhance the distribution of nanotherapeutics in the brain.增强纳米药物在脑部分布的策略。
J Control Release. 2017 Dec 10;267:232-239. doi: 10.1016/j.jconrel.2017.07.028. Epub 2017 Jul 21.
10
Arginine-rich polyplexes for gene delivery to neuronal cells.用于将基因递送至神经元细胞的富含精氨酸的多聚体。
Biomaterials. 2015 Aug;60:151-60. doi: 10.1016/j.biomaterials.2015.04.052. Epub 2015 May 22.

引用本文的文献

3
Recent advances in nanoparticulate RNA delivery systems.纳米颗粒 RNA 递释系统的最新进展。
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2307798120. doi: 10.1073/pnas.2307798120. Epub 2024 Mar 4.
5
Lipid Nanoparticles Deliver mRNA to the Brain after an Intracerebral Injection.颅内注射后脂质纳米颗粒将 mRNA 递送到大脑。
Biochemistry. 2023 Dec 19;62(24):3533-3547. doi: 10.1021/acs.biochem.3c00371. Epub 2023 Sep 20.
8
Polymer-Based mRNA Delivery Strategies for Advanced Therapies.基于聚合物的 mRNA 递呈策略用于先进疗法。
Adv Healthc Mater. 2023 Jun;12(15):e2202688. doi: 10.1002/adhm.202202688. Epub 2023 Feb 27.

本文引用的文献

8
A nanoparticle formulation that selectively transfects metastatic tumors in mice.一种能够选择性转染小鼠转移性肿瘤的纳米颗粒制剂。
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14717-22. doi: 10.1073/pnas.1313330110. Epub 2013 Aug 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验