Suppr超能文献

双相和单相抑郁的结构连接组网络属性的差异。

Differences in network properties of the structural connectome in bipolar and unipolar depression.

机构信息

Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, USA; Center for Behavioral Health, Cleveland Clinic, USA.

Department of Psychological and Brain Sciences, University of Delaware, USA.

出版信息

Psychiatry Res Neuroimaging. 2022 Apr;321:111442. doi: 10.1016/j.pscychresns.2022.111442. Epub 2022 Jan 21.

Abstract

BACKGROUND

Differentiation between Bipolar Disorder Depression (BDD) and Unipolar Major Depressive Disorder (MDD) is critical to clinical practice. This study investigated machine learning classification of BDD and MDD using graph properties of Diffusion-weighted Imaging (DWI)-based structural connectome.

METHODS

This study included a large number of medication-free (N =229) subjects: 60 BDD, 95 MDD, and 74 Healthy Control (HC) subjects. DWI probabilistic tractography was performed to create Fractional Anisotropy (FA) and Total Streamline (TS)-based structural connectivity matrices. Global and nodal graph properties were computed from these matrices and tested for group differences. Next, using identified graph properties, machine learning classification (MLC) between BDD, MDD, MDD with risk factors for developing BD (MDD+), and MDD without risk factors for developing BD (MDD-) was conducted.

RESULTS

Communicability Efficiency of the left superior frontal gyrus (SFG) was significantly higher in BDD vs. MDD. In particular, Communicability Efficiency using TS-based connectivity in the left SFG as well as FA-based connectivity in the right middle anterior cingulate area was higher in the BDD vs. MDD- group. There were no significant differences in graph properties between BDD and MDD+. Direct comparison between MDD+ and MDD- showed differences in Eigenvector Centrality (TS-based connectivity) of the left middle frontal sulcus. Acceptable Area Under Curve (AUC) for classification were seen between the BDD and MDD- groups, and between the MDD+ and MDD- groups, using the differing graph properties.

CONCLUSION

Graph properties of DWI-based connectivity can discriminate between BDD and MDD subjects without risk factors for BD.

摘要

背景

双相情感障碍抑郁(BDD)和单相重性抑郁障碍(MDD)的区分对临床实践至关重要。本研究使用基于弥散加权成像(DWI)的结构连接组图特性来研究 BDD 和 MDD 的机器学习分类。

方法

本研究纳入了大量未经药物治疗的受试者(N=229):60 名 BDD、95 名 MDD 和 74 名健康对照(HC)受试者。进行 DWI 概率追踪以创建分数各向异性(FA)和总流线(TS)为基础的结构连接矩阵。从这些矩阵中计算全局和节点图特性,并测试组间差异。接下来,使用所确定的图特性,对 BDD、MDD、有发展为 BD 风险因素的 MDD(MDD+)和无发展为 BD 风险因素的 MDD(MDD-)进行机器学习分类(MLC)。

结果

左侧额上回(SFG)的可传播效率在 BDD 中明显高于 MDD。特别是,使用基于 TS 的左侧 SFG 连接的可传播效率以及基于右侧中前扣带的 FA 连接的可传播效率在 BDD 中高于 MDD-组。BDD 和 MDD+之间的图特性没有显著差异。MDD+和 MDD-之间的直接比较显示出左侧额中回(TS 连接)的特征向量中心(Eigenvector Centrality)存在差异。使用不同的图特性,在 BDD 和 MDD-组之间以及 MDD+和 MDD-组之间,均可见到可接受的分类曲线下面积(AUC)。

结论

基于 DWI 的连接图特性可以区分无 BD 风险因素的 BDD 和 MDD 受试者。

相似文献

1
Differences in network properties of the structural connectome in bipolar and unipolar depression.
Psychiatry Res Neuroimaging. 2022 Apr;321:111442. doi: 10.1016/j.pscychresns.2022.111442. Epub 2022 Jan 21.
3
Anticipation-related brain connectivity in bipolar and unipolar depression: a graph theory approach.
Brain. 2016 Sep;139(Pt 9):2554-66. doi: 10.1093/brain/aww157. Epub 2016 Jun 30.
4
Graph theory approach for the structural-functional brain connectome of depression.
Prog Neuropsychopharmacol Biol Psychiatry. 2021 Dec 20;111:110401. doi: 10.1016/j.pnpbp.2021.110401. Epub 2021 Jul 12.
5
Shared and Specific Patterns of Structural Brain Connectivity Across Affective and Psychotic Disorders.
Biol Psychiatry. 2023 Jan 15;93(2):178-186. doi: 10.1016/j.biopsych.2022.05.031. Epub 2022 Jun 21.
6
DTI-based connectome analysis of adolescents with major depressive disorder reveals hypoconnectivity of the right caudate.
J Affect Disord. 2017 Jan 1;207:18-25. doi: 10.1016/j.jad.2016.09.013. Epub 2016 Sep 19.
8
Abnormal segments of right uncinate fasciculus and left anterior thalamic radiation in major and bipolar depression.
Prog Neuropsychopharmacol Biol Psychiatry. 2018 Feb 2;81:340-349. doi: 10.1016/j.pnpbp.2017.09.006. Epub 2017 Sep 11.
9
Combined static and dynamic functional connectivity signatures differentiating bipolar depression from major depressive disorder.
Aust N Z J Psychiatry. 2020 Aug;54(8):832-842. doi: 10.1177/0004867420924089. Epub 2020 May 26.
10
The centrality of working memory networks in differentiating bipolar type I depression from unipolar depression: A task-fMRI study.
Can J Psychiatry. 2023 Jan;68(1):22-32. doi: 10.1177/07067437221078646. Epub 2022 Mar 4.

引用本文的文献

1
The Dark and Gloomy Brain: Grey Matter Volume Alterations in Major Depressive Disorder-Fine-Grained Meta-Analyses.
Depress Anxiety. 2024 Mar 2;2024:6673522. doi: 10.1155/2024/6673522. eCollection 2024.
2
Diagnostic value of structural, functional and effective connectivity in bipolar disorder.
Acta Psychiatr Scand. 2025 Mar;151(3):192-209. doi: 10.1111/acps.13742. Epub 2024 Aug 13.

本文引用的文献

1
Sex classification using long-range temporal dependence of resting-state functional MRI time series.
Hum Brain Mapp. 2020 Sep;41(13):3567-3579. doi: 10.1002/hbm.25030. Epub 2020 Jul 6.
2
Inferring neural signalling directionality from undirected structural connectomes.
Nat Commun. 2019 Sep 19;10(1):4289. doi: 10.1038/s41467-019-12201-w.
4
Hippocampal functional connectivity-based discrimination between bipolar and major depressive disorders.
Psychiatry Res Neuroimaging. 2019 Feb 28;284:53-60. doi: 10.1016/j.pscychresns.2019.01.004. Epub 2019 Jan 12.
8
Differentiating between bipolar and unipolar depression in functional and structural MRI studies.
Prog Neuropsychopharmacol Biol Psychiatry. 2019 Apr 20;91:20-27. doi: 10.1016/j.pnpbp.2018.03.022. Epub 2018 Mar 28.
9
Bipolar II disorder: The need for clearer definition and improved management.
Aust N Z J Psychiatry. 2018 Jun;52(6):598-599. doi: 10.1177/0004867418761580. Epub 2018 Mar 8.
10
Early Intervention in Bipolar Disorder.
Am J Psychiatry. 2018 May 1;175(5):411-426. doi: 10.1176/appi.ajp.2017.17090972. Epub 2018 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验