Zanette I, Enders B, Dierolf M, Thibault P, Gradl R, Diaz A, Guizar-Sicairos M, Menzel A, Pfeiffer F, Zaslansky P
1] Physik-Department &Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany [2] Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom.
Physik-Department &Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany.
Sci Rep. 2015 Mar 20;5:9210. doi: 10.1038/srep09210.
Bones are bio-composites with biologically tunable mechanical properties, where a polymer matrix of nanofibrillar collagen is reinforced by apatite mineral crystals. Some bones, such as antler, form and change rapidly, while other bone tissues, such as human tooth dentine, develop slowly and maintain constant composition and architecture for entire lifetimes. When studying apatite mineral microarchitecture, mineral distributions or mineralization activity of bone-forming cells, representative samples of tissue are best studied at submicrometre resolution while minimizing sample-preparation damage. Here, we demonstrate the power of ptychographic X-ray tomography to map variations in the mineral content distribution in three dimensions and at the nanometre scale. Using this non-destructive method, we observe nanostructures surrounding hollow tracts that exist in human dentine forming dentinal tubules. We reveal unprecedented quantitative details of the ultrastructure clearly revealing the spatially varying mineralization density. Such information is essential for understanding a variety of natural and therapeutic effects for example in bone tissue healing and ageing.
骨骼是具有生物可调机械性能的生物复合材料,其中纳米纤维胶原蛋白的聚合物基质由磷灰石矿物晶体增强。一些骨骼,如鹿角,形成和变化迅速,而其他骨组织,如人类牙齿牙本质,则发育缓慢,并在整个生命周期内保持恒定的组成和结构。在研究磷灰石矿物微结构、矿物分布或成骨细胞的矿化活性时,组织的代表性样本最好在亚微米分辨率下进行研究,同时尽量减少样本制备损伤。在这里,我们展示了叠层X射线断层扫描技术在三维和纳米尺度上绘制矿物含量分布变化的能力。使用这种非破坏性方法,我们观察到人类牙本质中形成牙本质小管的中空管道周围的纳米结构。我们揭示了超微结构前所未有的定量细节,清楚地显示了矿化密度的空间变化。这些信息对于理解各种自然和治疗效果至关重要,例如在骨组织愈合和衰老方面。