Suppr超能文献

长非编码 RNA 功能注释:一种基于双色网络的全局预测方法。

Long non-coding RNAs function annotation: a global prediction method based on bi-colored networks.

机构信息

School of computer science and technology, Xidian University, 2 South Taibai Road, Xi'an Shaanxi, 710071, PR China.

出版信息

Nucleic Acids Res. 2013 Jan;41(2):e35. doi: 10.1093/nar/gks967. Epub 2012 Nov 5.

Abstract

More and more evidences demonstrate that the long non-coding RNAs (lncRNAs) play many key roles in diverse biological processes. There is a critical need to annotate the functions of increasing available lncRNAs. In this article, we try to apply a global network-based strategy to tackle this issue for the first time. We develop a bi-colored network based global function predictor, long non-coding RNA global function predictor ('lnc-GFP'), to predict probable functions for lncRNAs at large scale by integrating gene expression data and protein interaction data. The performance of lnc-GFP is evaluated on protein-coding and lncRNA genes. Cross-validation tests on protein-coding genes with known function annotations indicate that our method can achieve a precision up to 95%, with a suitable parameter setting. Among the 1713 lncRNAs in the bi-colored network, the 1625 (94.9%) lncRNAs in the maximum connected component are all functionally characterized. For the lncRNAs expressed in mouse embryo stem cells and neuronal cells, the inferred putative functions by our method highly match those in the known literature.

摘要

越来越多的证据表明,长非编码 RNA(lncRNAs)在多种生物过程中发挥着许多关键作用。因此,非常有必要对越来越多的 lncRNAs 的功能进行注释。在本文中,我们首次尝试应用基于全局网络的策略来解决这个问题。我们开发了一种双色网络全局功能预测器,长非编码 RNA 全局功能预测器('lnc-GFP'),通过整合基因表达数据和蛋白质相互作用数据,大规模预测 lncRNAs 的可能功能。我们在具有已知功能注释的蛋白质编码基因上评估了 lnc-GFP 的性能。对具有已知功能注释的蛋白质编码基因的交叉验证测试表明,在适当的参数设置下,我们的方法可以达到高达 95%的精度。在双色网络中的 1713 个 lncRNAs 中,最大连通组件中的 1625 个(94.9%)lncRNAs 都具有功能特征。对于在小鼠胚胎干细胞和神经元细胞中表达的 lncRNAs,我们的方法推断出的可能功能与已知文献中的高度匹配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50d8/3554231/5d4276dd304e/gks967f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验