†Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix Marseille Université, CNRS, BIP UMR 7281, 13402 Marseille, France.
∥Max-Planck-Institut für Chemische Energiekonversion, Stiftstr 34-36, 45470 Mülheim an der Ruhr, Germany.
J Am Chem Soc. 2015 Apr 29;137(16):5494-505. doi: 10.1021/jacs.5b01194. Epub 2015 Apr 17.
The use of synthetic inorganic complexes as supported catalysts is a key route in energy production and in industrial synthesis. However, their intrinsic oxygen sensitivity is sometimes an issue. Some of us have recently demonstrated that hydrogenases, the fragile but very efficient biological catalysts of H2 oxidation, can be protected from O2 damage upon integration into a film of a specifically designed redox polymer. Catalytic oxidation of H2 produces electrons which reduce oxygen near the film/solution interface, thus providing a self-activated protection from oxygen [Plumeré et al., Nat Chem. 2014, 6, 822-827]. Here, we rationalize this protection mechanism by examining the time-dependent distribution of species in the hydrogenase/polymer film, using measured or estimated values of all relevant parameters and the numerical and analytical solutions of a realistic reaction-diffusion scheme. Our investigation sets the stage for optimizing the design of hydrogenase-polymer films, and for expanding this strategy to other fragile catalysts.
将合成无机配合物作为负载型催化剂用于能源生产和工业合成是一种重要途径。然而,它们内在的氧敏感性有时是一个问题。我们最近的研究表明,氢化酶是 H2 氧化的脆弱但非常有效的生物催化剂,在整合到特定设计的氧化还原聚合物薄膜中时,可以防止 O2 损伤。H2 的催化氧化产生电子,这些电子还原薄膜/溶液界面附近的氧气,从而提供自我激活的 O2 保护[Plumeré 等人,Nat Chem. 2014, 6, 822-827]。在这里,我们通过使用所有相关参数的实测值或估计值以及实际反应扩散方案的数值和解析解,来检查氢化酶/聚合物薄膜中物种的时变分布,从而合理化这种保护机制。我们的研究为优化氢化酶-聚合物薄膜的设计以及将该策略扩展到其他脆弱催化剂奠定了基础。