Lammerts van Bueren Alicia, Saraf Aakanksha, Martens Eric C, Dijkhuizen Lubbert
Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands.
Appl Environ Microbiol. 2015 Jun 15;81(12):3973-83. doi: 10.1128/AEM.00149-15. Epub 2015 Apr 3.
Probiotic microorganisms are ingested as food or supplements and impart positive health benefits to consumers. Previous studies have indicated that probiotics transiently reside in the gastrointestinal tract and, in addition to modulating commensal species diversity, increase the expression of genes for carbohydrate metabolism in resident commensal bacterial species. In this study, it is demonstrated that the human gut commensal species Bacteroides thetaiotaomicron efficiently metabolizes fructan exopolysaccharide (EPS) synthesized by probiotic Lactobacillus reuteri strain 121 while only partially degrading reuteran and isomalto/malto-polysaccharide (IMMP) α-glucan EPS polymers. B. thetaiotaomicron metabolized these EPS molecules via the activation of enzymes and transport systems encoded by dedicated polysaccharide utilization loci specific for β-fructans and α-glucans. Reduced metabolism of reuteran and IMMP α-glucan EPS molecules may be due to reduced substrate binding by components of the starch utilization system (sus). This study reveals that microbial EPS substrates activate genes for carbohydrate metabolism in B. thetaiotaomicron and suggests that microbially derived carbohydrates provide a carbohydrate-rich reservoir for B. thetaiotaomicron nutrient acquisition in the gastrointestinal tract.
益生菌微生物作为食物或补充剂被摄入,并给消费者带来积极的健康益处。先前的研究表明,益生菌短暂驻留在胃肠道中,除了调节共生菌的物种多样性外,还会增加常驻共生细菌物种中碳水化合物代谢相关基因的表达。在本研究中,已证明人类肠道共生菌嗜热栖热放线菌能有效代谢由益生菌罗伊氏乳杆菌121合成的果聚糖胞外多糖(EPS),而仅部分降解罗伊氏聚糖和异麦芽糖/麦芽糖-多糖(IMMP)α-葡聚糖EPS聚合物。嗜热栖热放线菌通过激活由特定于β-果聚糖和α-葡聚糖的专用多糖利用位点编码的酶和转运系统来代谢这些EPS分子。罗伊氏聚糖和IMMPα-葡聚糖EPS分子代谢减少可能是由于淀粉利用系统(sus)成分与底物的结合减少。本研究揭示了微生物EPS底物激活了嗜热栖热放线菌中碳水化合物代谢相关基因,并表明微生物来源的碳水化合物为嗜热栖热放线菌在胃肠道中获取营养提供了富含碳水化合物的储存库。