Suppr超能文献

MetaMapR:纳入未知物的非通路依赖性代谢组学网络分析

MetaMapR: pathway independent metabolomic network analysis incorporating unknowns.

作者信息

Grapov Dmitry, Wanichthanarak Kwanjeera, Fiehn Oliver

机构信息

National Institutes of Health West Coast Metabolomics Center, Genome Center, University of California Davis, Davis CA 95616, USA and.

National Institutes of Health West Coast Metabolomics Center, Genome Center, University of California Davis, Davis CA 95616, USA and King Abdulaziz University, Biochemistry Department, Jeddah, Saudi Arabia.

出版信息

Bioinformatics. 2015 Aug 15;31(16):2757-60. doi: 10.1093/bioinformatics/btv194. Epub 2015 Apr 5.

Abstract

UNLABELLED

Metabolic network mapping is a widely used approach for integration of metabolomic experimental results with biological domain knowledge. However, current approaches can be limited by biochemical domain or pathway knowledge which results in sparse disconnected graphs for real world metabolomic experiments. MetaMapR integrates enzymatic transformations with metabolite structural similarity, mass spectral similarity and empirical associations to generate richly connected metabolic networks. This open source, web-based or desktop software, written in the R programming language, leverages KEGG and PubChem databases to derive associations between metabolites even in cases where biochemical domain or molecular annotations are unknown. Network calculation is enhanced through an interface to the Chemical Translation System, which allows metabolite identifier translation between >200 common biochemical databases. Analysis results are presented as interactive visualizations or can be exported as high-quality graphics and numerical tables which can be imported into common network analysis and visualization tools.

AVAILABILITY AND IMPLEMENTATION

Freely available at http://dgrapov.github.io/MetaMapR/. Requires R and a modern web browser. Installation instructions, tutorials and application examples are available at http://dgrapov.github.io/MetaMapR/.

CONTACT

ofiehn@ucdavis.edu.

摘要

未标注

代谢网络映射是一种广泛应用的方法,用于将代谢组学实验结果与生物领域知识相结合。然而,当前的方法可能受到生化领域或途径知识的限制,这导致在实际的代谢组学实验中生成稀疏且不相连的图。MetaMapR将酶促转化与代谢物结构相似性、质谱相似性和经验关联相结合,以生成连接丰富的代谢网络。这个用R编程语言编写的开源软件,既可以基于网络使用,也可以作为桌面软件使用,它利用KEGG和PubChem数据库来推导代谢物之间的关联,即使在生化领域或分子注释未知的情况下也能做到。通过与化学翻译系统的接口增强了网络计算功能,该接口允许在200多个常见生化数据库之间进行代谢物标识符的转换。分析结果以交互式可视化的形式呈现,或者可以导出为高质量的图形和数值表,这些可以导入到常见的网络分析和可视化工具中。

可用性与实现

可在http://dgrapov.github.io/MetaMapR/免费获取。需要R和现代网络浏览器。安装说明、教程和应用示例可在http://dgrapov.github.io/MetaMapR/获取。

联系方式

ofiehn@ucdavis.edu

相似文献

9
MBRole: enrichment analysis of metabolomic data.MBRole:代谢组学数据的富集分析。
Bioinformatics. 2011 Mar 1;27(5):730-1. doi: 10.1093/bioinformatics/btr001. Epub 2011 Jan 5.

引用本文的文献

6
An epidemiological introduction to human metabolomic investigations.人类代谢组学研究的流行病学概论。
Trends Endocrinol Metab. 2023 Sep;34(9):505-525. doi: 10.1016/j.tem.2023.06.006. Epub 2023 Jul 17.
10

本文引用的文献

2
Metabolomic markers of altered nucleotide metabolism in early stage adenocarcinoma.早期腺癌中核苷酸代谢改变的代谢组学标志物。
Cancer Prev Res (Phila). 2015 May;8(5):410-8. doi: 10.1158/1940-6207.CAPR-14-0329. Epub 2015 Feb 5.
4
Data, information, knowledge and principle: back to metabolism in KEGG.数据、信息、知识和原理:回到 KEGG 的代谢途径中。
Nucleic Acids Res. 2014 Jan;42(Database issue):D199-205. doi: 10.1093/nar/gkt1076. Epub 2013 Nov 7.
6
1,5-Anhydroglucitol in diabetes mellitus.1,5-脱水山梨醇在糖尿病中的作用。
Endocrine. 2013 Feb;43(1):33-40. doi: 10.1007/s12020-012-9760-6. Epub 2012 Jul 31.
8
Mass spectral molecular networking of living microbial colonies.微生物菌落的质谱分子网络分析。
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1743-52. doi: 10.1073/pnas.1203689109. Epub 2012 May 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验