Suppr超能文献

用于MRI-TRUS融合引导前列腺介入的开源图像配准

Open-source image registration for MRI-TRUS fusion-guided prostate interventions.

作者信息

Fedorov Andriy, Khallaghi Siavash, Sánchez C Antonio, Lasso Andras, Fels Sidney, Tuncali Kemal, Sugar Emily Neubauer, Kapur Tina, Zhang Chenxi, Wells William, Nguyen Paul L, Abolmaesumi Purang, Tempany Clare

机构信息

Brigham and Women's Hospital, Boston, MA, USA,

出版信息

Int J Comput Assist Radiol Surg. 2015 Jun;10(6):925-34. doi: 10.1007/s11548-015-1180-7. Epub 2015 Apr 7.

Abstract

PURPOSE

We propose two software tools for non-rigid registration of MRI and transrectal ultrasound (TRUS) images of the prostate. Our ultimate goal is to develop an open-source solution to support MRI-TRUS fusion image guidance of prostate interventions, such as targeted biopsy for prostate cancer detection and focal therapy. It is widely hypothesized that image registration is an essential component in such systems.

METHODS

The two non-rigid registration methods are: (1) a deformable registration of the prostate segmentation distance maps with B-spline regularization and (2) a finite element-based deformable registration of the segmentation surfaces in the presence of partial data. We evaluate the methods retrospectively using clinical patient image data collected during standard clinical procedures. Computation time and Target Registration Error (TRE) calculated at the expert-identified anatomical landmarks were used as quantitative measures for the evaluation.

RESULTS

The presented image registration tools were capable of completing deformable registration computation within 5 min. Average TRE was approximately 3 mm for both methods, which is comparable with the slice thickness in our MRI data. Both tools are available under nonrestrictive open-source license.

CONCLUSIONS

We release open-source tools that may be used for registration during MRI-TRUS-guided prostate interventions. Our tools implement novel registration approaches and produce acceptable registration results. We believe these tools will lower the barriers in development and deployment of interventional research solutions and facilitate comparison with similar tools.

摘要

目的

我们提出了两种用于前列腺MRI和经直肠超声(TRUS)图像非刚性配准的软件工具。我们的最终目标是开发一种开源解决方案,以支持前列腺介入手术的MRI-TRUS融合图像引导,例如用于前列腺癌检测的靶向活检和局部治疗。人们普遍认为图像配准是此类系统的一个重要组成部分。

方法

这两种非刚性配准方法是:(1)使用B样条正则化对前列腺分割距离图进行可变形配准,以及(2)在存在部分数据的情况下对分割表面进行基于有限元的可变形配准。我们使用在标准临床程序中收集的临床患者图像数据对这些方法进行回顾性评估。在专家确定的解剖标志点处计算的计算时间和目标配准误差(TRE)被用作评估的定量指标。

结果

所展示的图像配准工具能够在5分钟内完成可变形配准计算。两种方法的平均TRE约为3毫米,这与我们MRI数据中的切片厚度相当。这两种工具都可在非限制性开源许可下获得。

结论

我们发布了可用于MRI-TRUS引导的前列腺介入手术配准的开源工具。我们的工具实现了新颖的配准方法,并产生了可接受的配准结果。我们相信这些工具将降低介入研究解决方案开发和部署的障碍,并便于与类似工具进行比较。

相似文献

1
Open-source image registration for MRI-TRUS fusion-guided prostate interventions.
Int J Comput Assist Radiol Surg. 2015 Jun;10(6):925-34. doi: 10.1007/s11548-015-1180-7. Epub 2015 Apr 7.
8
Deformable registration of trans-rectal ultrasound (TRUS) and magnetic resonance imaging (MRI) for focal prostate brachytherapy.
Int J Comput Assist Radiol Surg. 2016 Jun;11(6):1015-23. doi: 10.1007/s11548-016-1380-9. Epub 2016 Mar 26.
9
Clinical evaluation of an MRI-to-ultrasound deformable image registration algorithm for prostate brachytherapy.
Brachytherapy. 2019 Jan-Feb;18(1):95-102. doi: 10.1016/j.brachy.2018.08.006. Epub 2018 Oct 2.
10
Learning Non-rigid Deformations for Robust, Constrained Point-based Registration in Image-Guided MR-TRUS Prostate Intervention.
Med Image Anal. 2017 Jul;39:29-43. doi: 10.1016/j.media.2017.04.001. Epub 2017 Apr 12.

引用本文的文献

2
A review of deep learning approaches for multimodal image segmentation of liver cancer.
J Appl Clin Med Phys. 2024 Dec;25(12):e14540. doi: 10.1002/acm2.14540. Epub 2024 Oct 7.
3
Registration of Longitudinal Spine CTs for Monitoring Lesion Growth.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12926. doi: 10.1117/12.3006621. Epub 2024 Apr 2.
4
MRI-Ultrasound Fused Approach for Prostate Biopsy-How It Is Performed.
Cancers (Basel). 2024 Apr 7;16(7):1424. doi: 10.3390/cancers16071424.
5
A Fusion Biopsy Framework for Prostate Cancer Based on Deformable Superellipses and nnU-Net.
Bioengineering (Basel). 2022 Jul 26;9(8):343. doi: 10.3390/bioengineering9080343.
6
Real-time multimodal image registration with partial intraoperative point-set data.
Med Image Anal. 2021 Dec;74:102231. doi: 10.1016/j.media.2021.102231. Epub 2021 Sep 21.
7
MRI-TRUS registration methodology for TRUS-guided HDR prostate brachytherapy.
J Appl Clin Med Phys. 2021 Aug;22(8):284-294. doi: 10.1002/acm2.13292. Epub 2021 Jul 28.
8
A deformable multimodal image registration using PET/CT and TRUS for intraoperative focal prostate brachytherapy.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10951. doi: 10.1117/12.2512996. Epub 2019 Mar 8.
9
Deformable registration of PET/CT and ultrasound for disease-targeted focal prostate brachytherapy.
J Med Imaging (Bellingham). 2019 Jul;6(3):035003. doi: 10.1117/1.JMI.6.3.035003. Epub 2019 Sep 12.
10
Learning deep similarity metric for 3D MR-TRUS image registration.
Int J Comput Assist Radiol Surg. 2019 Mar;14(3):417-425. doi: 10.1007/s11548-018-1875-7. Epub 2018 Oct 31.

本文引用的文献

1
Transperineal in-bore 3-T MR imaging-guided prostate biopsy: a prospective clinical observational study.
Radiology. 2015 Jan;274(1):170-80. doi: 10.1148/radiol.14140221. Epub 2014 Sep 15.
3
PLUS: open-source toolkit for ultrasound-guided intervention systems.
IEEE Trans Biomed Eng. 2014 Oct;61(10):2527-37. doi: 10.1109/TBME.2014.2322864. Epub 2014 May 9.
4
Efficient convex optimization approach to 3D non-rigid MR-TRUS registration.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):195-202. doi: 10.1007/978-3-642-40811-3_25.
8
Two solutions for registration of ultrasound to MRI for image-guided prostate interventions.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1129-32. doi: 10.1109/EMBC.2012.6346134.
9
Cancer statistics, 2013.
CA Cancer J Clin. 2013 Jan;63(1):11-30. doi: 10.3322/caac.21166. Epub 2013 Jan 17.
10
Prebiopsy magnetic resonance imaging and prostate cancer detection: comparison of random and targeted biopsies.
J Urol. 2013 Feb;189(2):493-9. doi: 10.1016/j.juro.2012.08.195. Epub 2012 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验