Suppr超能文献

学习用于 3D MR-TRUS 图像配准的深度相似性度量。

Learning deep similarity metric for 3D MR-TRUS image registration.

机构信息

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.

Philips Research North America, Cambridge, MA, 02141, USA.

出版信息

Int J Comput Assist Radiol Surg. 2019 Mar;14(3):417-425. doi: 10.1007/s11548-018-1875-7. Epub 2018 Oct 31.

Abstract

PURPOSE

The fusion of transrectal ultrasound (TRUS) and magnetic resonance (MR) images for guiding targeted prostate biopsy has significantly improved the biopsy yield of aggressive cancers. A key component of MR-TRUS fusion is image registration. However, it is very challenging to obtain a robust automatic MR-TRUS registration due to the large appearance difference between the two imaging modalities. The work presented in this paper aims to tackle this problem by addressing two challenges: (i) the definition of a suitable similarity metric and (ii) the determination of a suitable optimization strategy.

METHODS

This work proposes the use of a deep convolutional neural network to learn a similarity metric for MR-TRUS registration. We also use a composite optimization strategy that explores the solution space in order to search for a suitable initialization for the second-order optimization of the learned metric. Further, a multi-pass approach is used in order to smooth the metric for optimization.

RESULTS

The learned similarity metric outperforms the classical mutual information and also the state-of-the-art MIND feature-based methods. The results indicate that the overall registration framework has a large capture range. The proposed deep similarity metric-based approach obtained a mean TRE of 3.86 mm (with an initial TRE of 16 mm) for this challenging problem.

CONCLUSION

A similarity metric that is learned using a deep neural network can be used to assess the quality of any given image registration and can be used in conjunction with the aforementioned optimization framework to perform automatic registration that is robust to poor initialization.

摘要

目的

经直肠超声(TRUS)与磁共振(MR)图像融合引导靶向前列腺活检,显著提高了侵袭性癌症的活检阳性率。MR-TRUS 融合的一个关键组成部分是图像配准。然而,由于两种成像模式之间存在明显的外观差异,因此很难获得稳健的自动 MR-TRUS 配准。本文旨在通过解决两个挑战来解决这个问题:(i)定义合适的相似性度量,(ii)确定合适的优化策略。

方法

本研究提出了使用深度卷积神经网络来学习用于 MR-TRUS 配准的相似性度量。我们还使用了一种复合优化策略,以探索解决方案空间,为学习度量的二阶优化寻找合适的初始化。此外,还采用多遍方法对度量进行平滑优化。

结果

所学习的相似性度量优于经典的互信息和最新的基于 MIND 特征的方法。结果表明,整体注册框架具有较大的捕获范围。对于这个具有挑战性的问题,所提出的基于深度相似性度量的方法获得了平均 TRE 为 3.86mm(初始 TRE 为 16mm)的结果。

结论

使用深度神经网络学习的相似性度量可用于评估任何给定图像配准的质量,并可与上述优化框架结合使用,以实现对初始化较差具有鲁棒性的自动配准。

相似文献

1
Learning deep similarity metric for 3D MR-TRUS image registration.
Int J Comput Assist Radiol Surg. 2019 Mar;14(3):417-425. doi: 10.1007/s11548-018-1875-7. Epub 2018 Oct 31.
3
Robust 2-D-3-D Registration Optimization for Motion Compensation During 3-D TRUS-Guided Biopsy Using Learned Prostate Motion Data.
IEEE Trans Med Imaging. 2017 Oct;36(10):2010-2020. doi: 10.1109/TMI.2017.2703150. Epub 2017 May 10.
5
Learning Non-rigid Deformations for Robust, Constrained Point-based Registration in Image-Guided MR-TRUS Prostate Intervention.
Med Image Anal. 2017 Jul;39:29-43. doi: 10.1016/j.media.2017.04.001. Epub 2017 Apr 12.
7
Weakly supervised volumetric prostate registration for MRI-TRUS image driven by signed distance map.
Comput Biol Med. 2023 Sep;163:107150. doi: 10.1016/j.compbiomed.2023.107150. Epub 2023 Jun 8.
8
Biomechanically constrained non-rigid MR-TRUS prostate registration using deep learning based 3D point cloud matching.
Med Image Anal. 2021 Jan;67:101845. doi: 10.1016/j.media.2020.101845. Epub 2020 Oct 7.
10
Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
Med Phys. 2020 Jun;47(6):2413-2426. doi: 10.1002/mp.14134. Epub 2020 Apr 8.

引用本文的文献

1
A critical assessment of artificial intelligence in magnetic resonance imaging of cancer.
Npj Imaging. 2025;3(1):15. doi: 10.1038/s44303-025-00076-0. Epub 2025 Apr 9.
3
A survey on deep learning in medical image registration: New technologies, uncertainty, evaluation metrics, and beyond.
Med Image Anal. 2025 Feb;100:103385. doi: 10.1016/j.media.2024.103385. Epub 2024 Nov 10.
4
Automatic GAN-based MRI volume synthesis from US volumes: a proof of concept investigation.
Sci Rep. 2023 Dec 7;13(1):21716. doi: 10.1038/s41598-023-48595-3.
5
Ultrasound Frame-to-Volume Registration via Deep Learning for Interventional Guidance.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Sep;70(9):1016-1025. doi: 10.1109/TUFFC.2022.3229903. Epub 2023 Aug 29.
7
Double-Camera Fusion System for Animal-Position Awareness in Farming Pens.
Foods. 2022 Dec 23;12(1):84. doi: 10.3390/foods12010084.
8
The use of deep learning in interventional radiotherapy (brachytherapy): A review with a focus on open source and open data.
Z Med Phys. 2024 May;34(2):180-196. doi: 10.1016/j.zemedi.2022.10.005. Epub 2022 Nov 12.
9
A review of artificial intelligence in prostate cancer detection on imaging.
Ther Adv Urol. 2022 Oct 10;14:17562872221128791. doi: 10.1177/17562872221128791. eCollection 2022 Jan-Dec.
10
Cross-modal attention for multi-modal image registration.
Med Image Anal. 2022 Nov;82:102612. doi: 10.1016/j.media.2022.102612. Epub 2022 Sep 10.

本文引用的文献

1
Validation of MRI to TRUS registration for high-dose-rate prostate brachytherapy.
Brachytherapy. 2018 Mar-Apr;17(2):283-290. doi: 10.1016/j.brachy.2017.11.018. Epub 2018 Jan 10.
2
Cancer statistics, 2018.
CA Cancer J Clin. 2018 Jan;68(1):7-30. doi: 10.3322/caac.21442. Epub 2018 Jan 4.
3
Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms.
Int J Comput Assist Radiol Surg. 2018 Feb;13(2):229-240. doi: 10.1007/s11548-017-1692-4. Epub 2017 Dec 18.
4
Changes in prostate cancer detection rate of MRI-TRUS fusion vs systematic biopsy over time: evidence of a learning curve.
Prostate Cancer Prostatic Dis. 2017 Dec;20(4):436-441. doi: 10.1038/pcan.2017.34. Epub 2017 Aug 1.
5
Multimodal image-guided prostate fusion biopsy based on automatic deformable registration.
Int J Comput Assist Radiol Surg. 2015 Dec;10(12):1997-2007. doi: 10.1007/s11548-015-1233-y. Epub 2015 Jun 9.
6
Biomechanically Constrained Surface Registration: Application to MR-TRUS Fusion for Prostate Interventions.
IEEE Trans Med Imaging. 2015 Nov;34(11):2404-14. doi: 10.1109/TMI.2015.2440253. Epub 2015 Jun 3.
7
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
8
Open-source image registration for MRI-TRUS fusion-guided prostate interventions.
Int J Comput Assist Radiol Surg. 2015 Jun;10(6):925-34. doi: 10.1007/s11548-015-1180-7. Epub 2015 Apr 7.
10
Three-Dimensional Nonrigid MR-TRUS Registration Using Dual Optimization.
IEEE Trans Med Imaging. 2015 May;34(5):1085-95. doi: 10.1109/TMI.2014.2375207. Epub 2014 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验