Suppr超能文献

一种用于pH依赖性细胞标记的“智能”¹²⁸Xe核磁共振生物传感器。

A "Smart" ¹²⁸Xe NMR Biosensor for pH-Dependent Cell Labeling.

作者信息

Riggle Brittany A, Wang Yanfei, Dmochowski Ivan J

机构信息

Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States.

出版信息

J Am Chem Soc. 2015 Apr 29;137(16):5542-8. doi: 10.1021/jacs.5b01938. Epub 2015 Apr 20.

Abstract

Here we present a "smart" xenon-129 NMR biosensor that undergoes a peptide conformational change and labels cells in acidic environments. To a cryptophane host molecule with high Xe affinity, we conjugated a 30mer EALA-repeat peptide that is α-helical at pH 5.5 and disordered at pH 7.5. The (129)Xe NMR chemical shift at room temperature was strongly pH-dependent (Δδ = 3.4 ppm): δ = 64.2 ppm at pH 7.5 vs δ = 67.6 ppm at pH 5.5, where Trp(peptide)-cryptophane interactions were evidenced by Trp fluorescence quenching. Using hyper-CEST NMR, we probed peptidocryptophane detection limits at low-picomolar (10(-11) M) concentration, which compares favorably to other NMR pH reporters at 10(-2)-10(-3) M. Finally, in biosensor-HeLa cell solutions, peptide-cell membrane insertion at pH 5.5 generated a 13.4 ppm downfield cryptophane-(129)Xe NMR chemical shift relative to pH 7.5 studies. This highlights new uses for (129)Xe as an ultrasensitive probe of peptide structure and function, along with potential applications for pH-dependent cell labeling in cancer diagnosis and treatment.

摘要

在此,我们展示了一种“智能”的氙-129核磁共振生物传感器,它在酸性环境中会发生肽构象变化并标记细胞。对于具有高氙亲和力的穴醚主体分子,我们连接了一个30聚体EALA重复肽,该肽在pH 5.5时呈α螺旋结构,在pH 7.5时无序。室温下的(129)Xe核磁共振化学位移强烈依赖于pH值(Δδ = 3.4 ppm):在pH 7.5时δ = 64.2 ppm,而在pH 5.5时δ = 67.6 ppm,其中色氨酸(肽)-穴醚相互作用通过色氨酸荧光猝灭得以证明。使用超极化化学交换饱和转移核磁共振(hyper-CEST NMR),我们在低皮摩尔(10^(-11) M)浓度下探测了肽穴醚的检测限,这与其他核磁共振pH报告分子在10^(-2)-10^(-3) M时相比具有优势。最后,在生物传感器-海拉细胞溶液中,相对于pH 7.5的研究,pH 5.5时肽插入细胞膜导致穴醚-(129)Xe核磁共振化学位移向低场移动了13.4 ppm。这突出了氙-129作为肽结构和功能的超灵敏探针的新用途,以及在癌症诊断和治疗中pH依赖的细胞标记的潜在应用。

相似文献

1
A "Smart" ¹²⁸Xe NMR Biosensor for pH-Dependent Cell Labeling.
J Am Chem Soc. 2015 Apr 29;137(16):5542-8. doi: 10.1021/jacs.5b01938. Epub 2015 Apr 20.
2
Cryptophane Nanoscale Assemblies Expand Xe NMR Biosensing.
Anal Chem. 2018 Jun 19;90(12):7730-7738. doi: 10.1021/acs.analchem.8b01630. Epub 2018 Jun 1.
3
An Expanded Palette of Xenon-129 NMR Biosensors.
Acc Chem Res. 2016 Oct 18;49(10):2179-2187. doi: 10.1021/acs.accounts.6b00309. Epub 2016 Sep 19.
4
A cryptophane-based "turn-on" Xe NMR biosensor for monitoring calmodulin.
Org Biomol Chem. 2017 Oct 31;15(42):8883-8887. doi: 10.1039/c7ob02391j.
5
Monomeric Cryptophane with Record-High Xe Affinity Gives Insights into Aggregation-Dependent Sensing.
Anal Chem. 2021 Jan 26;93(3):1507-1514. doi: 10.1021/acs.analchem.0c03776. Epub 2020 Dec 28.
6
Designing 129Xe NMR biosensors for matrix metalloproteinase detection.
J Am Chem Soc. 2006 Oct 11;128(40):13274-83. doi: 10.1021/ja0640501.
7
Utilizing a water-soluble cryptophane with fast xenon exchange rates for picomolar sensitivity NMR measurements.
Anal Chem. 2012 Nov 20;84(22):9935-41. doi: 10.1021/ac302347y. Epub 2012 Nov 6.
8
Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase.
J Am Chem Soc. 2009 Jan 21;131(2):563-9. doi: 10.1021/ja806092w.
9
A xenon-129 biosensor for monitoring MHC-peptide interactions.
Angew Chem Int Ed Engl. 2009;48(23):4142-5. doi: 10.1002/anie.200806149.
10
A doubly responsive probe for the detection of Cys4-tagged proteins.
Chem Commun (Camb). 2015 Jul 21;51(57):11482-4. doi: 10.1039/c5cc04721h.

引用本文的文献

2
Opportunities and challenges with hyperpolarized bioresponsive probes for functional imaging using magnetic resonance.
Nat Chem. 2023 Jun;15(6):755-763. doi: 10.1038/s41557-023-01211-3. Epub 2023 Jun 1.
3
Counteranions at Peripheral Sites Tune Guest Affinity for a Protonated Hemicryptophane.
J Org Chem. 2022 Apr 15;87(8):5158-5165. doi: 10.1021/acs.joc.1c03128. Epub 2022 Mar 25.
4
Ultrasensitive molecular building block for biothiol NMR detection at picomolar concentrations.
iScience. 2021 Nov 24;24(12):103515. doi: 10.1016/j.isci.2021.103515. eCollection 2021 Dec 17.
6
Cryptophane-xenon complexes for Xe MRI applications.
RSC Adv. 2021;11(13):7693-7703. doi: 10.1039/d0ra10765d. Epub 2021 Feb 17.
7
Fast Ion-Chelate Dissociation Rate for MRI of Labile Zinc with Frequency-Specific Encodability.
J Am Chem Soc. 2021 Aug 4;143(30):11751-11758. doi: 10.1021/jacs.1c05376. Epub 2021 Jul 23.
8
Versatile non-luminescent color palette based on guest exchange dynamics in paramagnetic cavitands.
Nat Commun. 2021 May 24;12(1):3072. doi: 10.1038/s41467-021-23179-9.
9
Mapping of Absolute Host Concentration and Exchange Kinetics of Xenon Hyper-CEST MRI Agents.
Pharmaceuticals (Basel). 2021 Jan 21;14(2):79. doi: 10.3390/ph14020079.
10
Monomeric Cryptophane with Record-High Xe Affinity Gives Insights into Aggregation-Dependent Sensing.
Anal Chem. 2021 Jan 26;93(3):1507-1514. doi: 10.1021/acs.analchem.0c03776. Epub 2020 Dec 28.

本文引用的文献

1
Cell-compatible, integrin-targeted cryptophane-Xe NMR biosensors.
Chem Sci. 2011 Jun;2(6):1103-1110. doi: 10.1039/C1SC00041A.
2
Multichannel MRI labeling of mammalian cells by switchable nanocarriers for hyperpolarized xenon.
Nano Lett. 2014 Oct 8;14(10):5721-6. doi: 10.1021/nl502498w. Epub 2014 Sep 30.
4
A diaCEST MRI approach for monitoring liposomal accumulation in tumors.
J Control Release. 2014 Apr 28;180:51-9. doi: 10.1016/j.jconrel.2014.02.005. Epub 2014 Feb 15.
5
Cell tracking with caged xenon: using cryptophanes as MRI reporters upon cellular internalization.
Angew Chem Int Ed Engl. 2014 Jan 7;53(2):493-6. doi: 10.1002/anie.201307290. Epub 2013 Dec 4.
6
Comparison of divalent transition metal ion paraCEST MRI contrast agents.
J Biol Inorg Chem. 2014 Feb;19(2):191-205. doi: 10.1007/s00775-013-1059-4. Epub 2013 Nov 20.
8
Multi-chromatic pH-activatable 19F-MRI nanoprobes with binary ON/OFF pH transitions and chemical-shift barcodes.
Angew Chem Int Ed Engl. 2013 Jul 29;52(31):8074-8. doi: 10.1002/anie.201301135. Epub 2013 Jun 20.
9
A novel class of polymeric pH-responsive MRI CEST agents.
Chem Commun (Camb). 2013 Jul 21;49(57):6418-20. doi: 10.1039/c3cc42452a.
10
A recombinant biopolymeric platform for reliable evaluation of the activity of pH-responsive amphiphile fusogenic peptides.
Biomacromolecules. 2013 Jun 10;14(6):2033-40. doi: 10.1021/bm400380s. Epub 2013 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验