Lehne Benjamin, Drong Alexander W, Loh Marie, Zhang Weihua, Scott William R, Tan Sian-Tsung, Afzal Uzma, Scott James, Jarvelin Marjo-Riitta, Elliott Paul, McCarthy Mark I, Kooner Jaspal S, Chambers John C
Genome Biol. 2015 Feb 15;16(1):37. doi: 10.1186/s13059-015-0600-x.
DNA methylation plays a fundamental role in the regulation of the genome, but the optimal strategy for analysis of genome-wide DNA methylation data remains to be determined. We developed a comprehensive analysis pipeline for epigenome-wide association studies (EWAS) using the Illumina Infinium HumanMethylation450 BeadChip, based on 2,687 individuals, with 36 samples measured in duplicate. We propose new approaches to quality control, data normalisation and batch correction through control-probe adjustment and establish a null hypothesis for EWAS using permutation testing. Our analysis pipeline outperforms existing approaches, enabling accurate identification of methylation quantitative trait loci for hypothesis driven follow-up experiments.
DNA甲基化在基因组调控中起着基础性作用,但全基因组DNA甲基化数据分析的最佳策略仍有待确定。我们基于2687名个体,开发了一种用于全表观基因组关联研究(EWAS)的综合分析流程,使用Illumina Infinium HumanMethylation450 BeadChip,其中36个样本进行了重复测量。我们提出了通过对照探针调整进行质量控制、数据归一化和批次校正的新方法,并使用置换检验为EWAS建立无效假设。我们的分析流程优于现有方法,能够准确识别甲基化数量性状位点,用于假设驱动的后续实验。