Angione Claudio, Pratanwanich Naruemon, Lió Pietro
Computer Laboratory, University of Cambridge, Cambridge CB3 0FD, United Kingdom.
ACS Synth Biol. 2015 Aug 21;4(8):880-9. doi: 10.1021/sb5003407. Epub 2015 Apr 27.
The growing availability of multiomic data provides a highly comprehensive view of cellular processes at the levels of mRNA, proteins, metabolites, and reaction fluxes. However, due to probabilistic interactions between components depending on the environment and on the time course, casual, sometimes rare interactions may cause important effects in the cellular physiology. To date, interactions at the pathway level cannot be measured directly, and methodologies to predict pathway cross-correlations from reaction fluxes are still missing. Here, we develop a multiomic approach of flux-balance analysis combined with Bayesian factor modeling with the aim of detecting pathway cross-correlations and predicting metabolic pathway activation profiles. Starting from gene expression profiles measured in various environmental conditions, we associate a flux rate profile with each condition. We then infer pathway cross-correlations and identify the degrees of pathway activation with respect to the conditions and time course using Bayesian factor modeling. We test our framework on the most recent metabolic reconstruction of Escherichia coli in both static and dynamic environments, thus predicting the functionality of particular groups of reactions and how it varies over time. In a dynamic environment, our method can be readily used to characterize the temporal progression of pathway activation in response to given stimuli.
多组学数据的日益丰富,为mRNA、蛋白质、代谢物和反应通量水平上的细胞过程提供了高度全面的视角。然而,由于各组分之间基于环境和时间进程的概率性相互作用,偶然的、有时甚至是罕见的相互作用可能会对细胞生理学产生重要影响。迄今为止,尚无法直接测量通路水平的相互作用,且仍缺乏从反应通量预测通路互相关的方法。在此,我们开发了一种通量平衡分析与贝叶斯因子建模相结合的多组学方法,旨在检测通路互相关并预测代谢通路激活谱。从在各种环境条件下测得的基因表达谱出发,我们为每种条件关联一个通量率谱。然后,我们使用贝叶斯因子建模推断通路互相关,并确定相对于条件和时间进程的通路激活程度。我们在静态和动态环境下,对大肠杆菌的最新代谢重建模型测试了我们的框架,从而预测特定反应组的功能及其随时间的变化。在动态环境中,我们的方法可轻松用于表征通路激活响应给定刺激的时间进程。