Suppr超能文献

多组学网络模型中环境适应性的预测分析

Predictive analytics of environmental adaptability in multi-omic network models.

作者信息

Angione Claudio, Lió Pietro

机构信息

Computer Laboratory - University of Cambridge, UK.

出版信息

Sci Rep. 2015 Oct 20;5:15147. doi: 10.1038/srep15147.

Abstract

Bacterial phenotypic traits and lifestyles in response to diverse environmental conditions depend on changes in the internal molecular environment. However, predicting bacterial adaptability is still difficult outside of laboratory controlled conditions. Many molecular levels can contribute to the adaptation to a changing environment: pathway structure, codon usage, metabolism. To measure adaptability to changing environmental conditions and over time, we develop a multi-omic model of Escherichia coli that accounts for metabolism, gene expression and codon usage at both transcription and translation levels. After the integration of multiple omics into the model, we propose a multiobjective optimization algorithm to find the allowable and optimal metabolic phenotypes through concurrent maximization or minimization of multiple metabolic markers. In the condition space, we propose Pareto hypervolume and spectral analysis as estimators of short term multi-omic (transcriptomic and metabolic) evolution, thus enabling comparative analysis of metabolic conditions. We therefore compare, evaluate and cluster different experimental conditions, models and bacterial strains according to their metabolic response in a multidimensional objective space, rather than in the original space of microarray data. We finally validate our methods on a phenomics dataset of growth conditions. Our framework, named METRADE, is freely available as a MATLAB toolbox.

摘要

细菌对不同环境条件的表型特征和生活方式取决于内部分子环境的变化。然而,在实验室控制条件之外预测细菌的适应性仍然很困难。许多分子水平都有助于适应不断变化的环境:途径结构、密码子使用、代谢。为了测量对不断变化的环境条件以及随时间的适应性,我们开发了一种大肠杆菌的多组学模型,该模型在转录和翻译水平上考虑了代谢、基因表达和密码子使用。在将多个组学整合到模型中之后,我们提出了一种多目标优化算法,通过同时最大化或最小化多个代谢标记来找到允许的和最优的代谢表型。在条件空间中,我们提出帕累托超体积和光谱分析作为短期多组学(转录组学和代谢组学)进化的估计器,从而能够对代谢条件进行比较分析。因此,我们根据不同实验条件、模型和细菌菌株在多维目标空间中的代谢反应,而不是在微阵列数据的原始空间中,对它们进行比较、评估和聚类。我们最终在一个生长条件的表型组学数据集上验证了我们的方法。我们的框架名为METRADE,可作为MATLAB工具箱免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3121/4611489/8421d4e49019/srep15147-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验