Suppr超能文献

用于芯片实验室应用的离心微流体流动的主动气动控制。

Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications.

作者信息

Clime Liviu, Brassard Daniel, Geissler Matthias, Veres Teodor

机构信息

National Research Council of Canada, 75 de Mortagne, Boucherville, Quebec J4B 6Y4, Canada.

出版信息

Lab Chip. 2015 Jun 7;15(11):2400-11. doi: 10.1039/c4lc01490a.

Abstract

This paper reports a novel method of controlling liquid motion on a centrifugal microfluidic platform based on the integration of a regulated pressure pump and a programmable electromechanical valving system. We demonstrate accurate control over the displacement of liquids within the system by pressurizing simultaneously multiple ports of the microfluidic device while the platform is rotating at high speed. Compared to classical centrifugal microfluidic platforms where liquids are solely driven by centrifugal and capillary forces, the method presented herein adds a new degree of freedom for fluidic manipulation, which represents a paradigm change in centrifugal microfluidics. We first demonstrate how various core microfluidic functions such as valving, switching, and reverse pumping (i.e., against the centrifugal field) can be easily achieved by programming the pressures applied at dedicated access ports of the microfluidic device. We then show, for the first time, that the combination of centrifugal force and active pneumatic pumping offers the possibility of mixing fluids rapidly (~0.1 s) and efficiently based on the creation of air bubbles at the bottom of a microfluidic reservoir. Finally, the suitability of the developed platform for performing complex bioanalytical assays in an automated fashion is demonstrated in a DNA harvesting experiment where recovery rates of about 70% were systematically achieved. The proposed concept offers the interesting prospect to decouple basic microfluidic functions from specific material properties, channel dimensions and fabrication tolerances, surface treatments, or on-chip active components, thus promoting integration of complex assays on simple and low-cost microfluidic cartridges.

摘要

本文报道了一种基于集成调节压力泵和可编程机电阀门系统,在离心微流控平台上控制液体运动的新方法。我们展示了在平台高速旋转时,通过同时对微流控装置的多个端口加压,能够精确控制系统内液体的位移。与传统的离心微流控平台相比,传统平台中液体仅由离心力和毛细管力驱动,本文提出的方法为流体操作增加了一个新的自由度,这代表了离心微流控领域的范式转变。我们首先展示了如何通过对微流控装置专用入口端口施加的压力进行编程,轻松实现各种核心微流控功能,如阀门控制、切换和反向泵送(即逆着离心场)。然后,我们首次表明,离心力和主动气动泵送相结合,基于在微流控储液器底部产生气泡,提供了快速(约0.1秒)且高效混合流体的可能性。最后,在DNA提取实验中,展示了所开发平台以自动化方式进行复杂生物分析测定的适用性,该实验系统地实现了约70%的回收率。所提出的概念提供了一个有趣的前景,即基本的微流控功能可以与特定材料特性、通道尺寸和制造公差、表面处理或片上有源组件解耦,从而促进在简单且低成本的微流控芯片上集成复杂测定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验