Othman Rebeen, E Morris Gavin, Shah Disheet A, Hall Stephen, Hall Graham, Wells Keith, Shakesheff Kevin M, Dixon James E
School of Pharmacy, Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
Biofabrication. 2015 Apr 14;7(2):025003. doi: 10.1088/1758-5090/7/2/025003.
The use of materials to impose tissue-like architecture at cell resolution will be important if engineered functional replacements for damaged cardiovascular, pulmonary, renal or digestive tissues are to be authentically engineered. Here, we demonstrate a coordinated system for the fabrication and subsequent culture of tubular tissues composed of multiple layers, cell-types and materials with physiological dimensions and defined architectures at cell resolution. We developed an automated tube fabricator that rolls 2D-matrices into 3D-tubular constructs directly from cells, hydrogels and scaffold biomaterials. Coordinated use of surface modification strategies allows 2D cell sheets and cell/biomaterial composites (i.e. hydrogels or electrospun scaffolds) to be fabricated which may be transferred into a perfusion bioreactor in a rapid and standardized procedure. To exemplify our strategy we fabricated structures resembling human mammary artery and gut; these can be imaged in situ and real-time electrical resistance measurements performed of the vessel walls, allowing non-invasive assessment of viability and functionality. Our system allows patterning at cellular resolution with variable tissue thickness, length, luminal diameter, and constituent biomaterial. This inherent flexibility will allow the recapitulation of the complex hierarchical biological architectures and generate functionality found natively in vivo.
如果要真正制造出用于替换受损心血管、肺、肾或消化组织的工程功能性替代品,那么利用材料在细胞分辨率下构建类似组织的结构将非常重要。在此,我们展示了一种协调系统,用于制造并随后培养由多层、多种细胞类型和材料组成的具有生理尺寸且在细胞分辨率下具有明确结构的管状组织。我们开发了一种自动管材制造机,可直接从细胞、水凝胶和支架生物材料将二维矩阵卷成三维管状结构。通过协调使用表面改性策略,可以制造二维细胞片和细胞/生物材料复合材料(即水凝胶或电纺支架),并以快速且标准化的程序将其转移到灌注生物反应器中。为了举例说明我们的策略,我们制造了类似人乳腺动脉和肠道的结构;这些结构可以在原位成像,并对血管壁进行实时电阻测量,从而实现对活力和功能的非侵入性评估。我们的系统允许在细胞分辨率下进行图案化,具有可变的组织厚度、长度、管腔直径和组成生物材料。这种固有的灵活性将允许重现复杂的分层生物结构,并产生体内天然存在的功能。