Suppr超能文献

针对发展中国家嘈杂临床环境的实际应用,对小儿肺部听诊进行自适应噪声抑制。

Adaptive Noise Suppression of Pediatric Lung Auscultations With Real Applications to Noisy Clinical Settings in Developing Countries.

作者信息

Emmanouilidou Dimitra, McCollum Eric D, Park Daniel E, Elhilali Mounya

出版信息

IEEE Trans Biomed Eng. 2015 Sep;62(9):2279-88. doi: 10.1109/TBME.2015.2422698. Epub 2015 Apr 13.

Abstract

GOAL

Chest auscultation constitutes a portable low-cost tool widely used for respiratory disease detection. Though it offers a powerful means of pulmonary examination, it remains riddled with a number of issues that limit its diagnostic capability. Particularly, patient agitation (especially in children), background chatter, and other environmental noises often contaminate the auscultation, hence affecting the clarity of the lung sound itself. This paper proposes an automated multiband denoising scheme for improving the quality of auscultation signals against heavy background contaminations.

METHODS

The algorithm works on a simple two-microphone setup, dynamically adapts to the background noise and suppresses contaminations while successfully preserving the lung sound content. The proposed scheme is refined to offset maximal noise suppression against maintaining the integrity of the lung signal, particularly its unknown adventitious components that provide the most informative diagnostic value during lung pathology.

RESULTS

The algorithm is applied to digital recordings obtained in the field in a busy clinic in West Africa and evaluated using objective signal fidelity measures and perceptual listening tests performed by a panel of licensed physicians. A strong preference of the enhanced sounds is revealed.

SIGNIFICANCE

The strengths and benefits of the proposed method lie in the simple automated setup and its adaptive nature, both fundamental conditions for everyday clinical applicability. It can be simply extended to a real-time implementation, and integrated with lung sound acquisition protocols.

摘要

目标

胸部听诊是一种广泛用于检测呼吸道疾病的便携式低成本工具。尽管它提供了一种强大的肺部检查手段,但仍存在许多问题限制其诊断能力。特别是,患者的躁动(尤其是儿童)、背景交谈声和其他环境噪声常常会干扰听诊,从而影响肺部声音本身的清晰度。本文提出了一种自动多频段去噪方案,以提高在严重背景干扰下听诊信号的质量。

方法

该算法基于一个简单的双麦克风设置工作,能动态适应背景噪声并抑制干扰,同时成功保留肺部声音内容。所提出的方案经过优化,以在保持肺部信号完整性,特别是其未知的附加成分(在肺部病理检查中提供最具诊断价值信息)的同时,实现最大程度的噪声抑制。

结果

该算法应用于在西非一家繁忙诊所现场获取的数字录音,并通过客观信号保真度测量和由一组执业医师进行的感知听力测试进行评估。结果显示对增强后的声音有强烈偏好。

意义

所提出方法的优势和益处在于其简单的自动设置及其自适应特性,这两者都是日常临床应用的基本条件。它可以简单地扩展到实时实现,并与肺部声音采集协议集成。

相似文献

3
Characterization of noise contaminations in lung sound recordings.肺部声音记录中噪声污染的特征描述。
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:2551-4. doi: 10.1109/EMBC.2013.6610060.
6
An objective measure of signal quality for pediatric lung auscultations.一种用于小儿肺部听诊的信号质量客观测量方法。
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:772-775. doi: 10.1109/EMBC44109.2020.9176539.
10
[Normal and Adventitious Breath Sounds].[正常呼吸音与附加呼吸音]
Pneumologie. 2016 Jun;70(6):397-404. doi: 10.1055/s-0042-106155. Epub 2016 May 13.

引用本文的文献

6
Sound-guided assessment and localization of pulmonary air leak.肺部漏气的声学引导评估与定位
Bioeng Transl Med. 2022 May 4;8(1):e10322. doi: 10.1002/btm2.10322. eCollection 2023 Jan.

本文引用的文献

2
Characterization of noise contaminations in lung sound recordings.肺部声音记录中噪声污染的特征描述。
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:2551-4. doi: 10.1109/EMBC.2013.6610060.
3
A multiresolution analysis for detection of abnormal lung sounds.一种用于检测异常肺音的多分辨率分析方法。
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3139-42. doi: 10.1109/EMBC.2012.6346630.
4
Localizing heart sounds in respiratory signals using singular spectrum analysis.利用奇异谱分析对呼吸信号中的心音进行定位。
IEEE Trans Biomed Eng. 2011 Dec;58(12):3360-7. doi: 10.1109/TBME.2011.2162728. Epub 2011 Jul 22.
7
Analysis of respiratory sounds: state of the art.呼吸音分析:现状
Clin Med Circ Respirat Pulm Med. 2008 May 16;2:45-58. doi: 10.4137/ccrpm.s530.
9
Method for automatic detection of wheezing in lung sounds.肺部声音中哮鸣音的自动检测方法。
Braz J Med Biol Res. 2009 Jul;42(7):674-84. doi: 10.1590/s0100-879x2009000700013.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验