Ferreira Meghaan M, Dewi Ruby E, Heilshorn Sarah C
Department of Chemical Engineering, Stanford University, Stanford, CA 94305-4045, USA.
Integr Biol (Camb). 2015 May;7(5):569-79. doi: 10.1039/c5ib00060b. Epub 2015 Apr 24.
Exposing myoblasts to basic fibroblast growth factor (bFGF), which is released after muscle injury, results in receptor phosphorylation, faster migration, and increased proliferation. These effects occur on time scales that extend across three orders of magnitude (10(0)-10(3) minutes). Finite element modeling of Transwell assays, which are traditionally used to assess chemotaxis, revealed that the bFGF gradient formed across the membrane pore is short-lived and diminishes 45% within the first minute. Thus, to evaluate bFGF-induced migration over 10(2) minutes, we employed a microfluidic assay capable of producing a stable, linear concentration gradient to perform single-cell analyses of chemokinesis and chemotaxis. We hypothesized that the composition of the underlying extracellular matrix (ECM) may affect the behavioral response of myoblasts to soluble bFGF, as previous work with other cell types has suggested crosstalk between integrin and fibroblast growth factor (FGF) receptors. Consistent with this notion, we found that bFGF significantly reduced the doubling time of myoblasts cultured on laminin but not fibronectin or collagen. Laminin also promoted significantly faster migration speeds (13.4 μm h(-1)) than either fibronectin (10.6 μm h(-1)) or collagen (7.6 μm h(-1)) without bFGF stimulation. Chemokinesis driven by bFGF further increased migration speed in a strictly additive manner, resulting in an average increase of 2.3 μm h(-1) across all ECMs tested. We observed relatively mild chemoattraction (∼67% of myoblast population) in response to bFGF gradients of 3.2 ng mL(-1) mm(-1) regardless of ECM identity. Thus, while ECM-bFGF crosstalk did impact chemoproliferation, it did not have a significant effect on chemokinesis or chemotaxis. These data suggest that the main physiological effect of bFGF on myoblast migration is chemokinesis and that changes in the surrounding ECM, resulting from aging and/or disease may impact muscle regeneration by altering myoblast migration and proliferation.
将成肌细胞暴露于肌肉损伤后释放的碱性成纤维细胞生长因子(bFGF),会导致受体磷酸化、迁移加快和增殖增加。这些效应发生的时间尺度跨越三个数量级(10⁰ - 10³分钟)。传统上用于评估趋化性的Transwell实验的有限元建模显示,跨膜孔形成的bFGF梯度是短暂的,在第一分钟内就会减少45%。因此,为了评估bFGF在10²分钟内诱导的迁移,我们采用了一种能够产生稳定线性浓度梯度的微流控实验来进行趋化运动和趋化性的单细胞分析。我们假设,由于先前对其他细胞类型的研究表明整合素与成纤维细胞生长因子(FGF)受体之间存在相互作用,因此潜在的细胞外基质(ECM)组成可能会影响成肌细胞对可溶性bFGF的行为反应。与此观点一致,我们发现bFGF显著缩短了在层粘连蛋白上培养的成肌细胞的倍增时间,但对纤连蛋白或胶原蛋白上培养的成肌细胞没有影响。在没有bFGF刺激的情况下,层粘连蛋白还能促进迁移速度显著加快(13.4 μm h⁻¹),高于纤连蛋白(10.6 μm h⁻¹)或胶原蛋白(7.6 μm h⁻¹)。bFGF驱动的趋化运动以严格累加的方式进一步提高了迁移速度,在所有测试的ECM上平均增加了2.3 μm h⁻¹。无论ECM类型如何,我们观察到在3.2 ng mL⁻¹ mm⁻¹的bFGF梯度下,相对温和的化学吸引作用(约67%的成肌细胞群体)。因此,虽然ECM - bFGF相互作用确实影响了化学增殖,但对趋化运动或趋化性没有显著影响。这些数据表明,bFGF对成肌细胞迁移的主要生理作用是趋化运动,并且由衰老和/或疾病导致的周围ECM变化可能通过改变成肌细胞迁移和增殖来影响肌肉再生。