Hofferek Vinzenz, Mendrinna Amelie, Gaude Nicole, Krajinski Franziska, Devers Emanuel A
Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, (OT) Golm, Germany.
Present address: Department of Biology, Swiss Federal Institute of Technology Zurich, Zürich, Switzerland.
BMC Plant Biol. 2014 Jul 23;14:199. doi: 10.1186/s12870-014-0199-1.
Legumes have the unique capability to undergo root nodule and arbuscular mycorrhizal symbiosis. Both types of root endosymbiosis are regulated by NSP2, which is a target of microRNA171h (miR171h). Although, recent data implies that miR171h specifically restricts arbuscular mycorrhizal symbiosis in the root elongation zone of Medicago truncatula roots, there is limited knowledge available about the spatio-temporal regulation of miR171h expression at different physiological and symbiotic conditions.
We show that miR171h is functionally expressed from an unusual long primary transcript, previously predicted to encode two identical miR171h strands. Both miR171h and NSP2 transcripts display a complex regulation pattern, which involves the symbiotic status and the fertilization regime of the plant. Quantitative Real-time PCR revealed that miR171h and NSP2 transcript levels show a clear anti-correlation in all tested conditions except in mycorrhizal roots, where NSP2 transcript levels were induced despite of an increased miR171h expression. This was also supported by a clear correlation of transcript levels of NSP2 and MtPt4, a phosphate transporter specifically expressed in a functional AM symbiosis. MiR171h is strongly induced in plants growing in sufficient phosphate conditions, which we demonstrate to be independent of the CRE1 signaling pathway and which is also not required for transcriptional induction of NSP2 in mycorrhizal roots. In situ hybridization and promoter activity analysis of both genes confirmed the complex regulation involving the symbiotic status, P and N nutrition, where both genes show a mainly mutual exclusive expression pattern. Overexpression of miR171h in M. truncatula roots led to a reduction in mycorrhizal colonization and to a reduced nodulation by Sinorhizobium meliloti.
The spatio-temporal expression of miR171h and NSP2 is tightly linked to the nutritional status of the plant and, together with the results from the overexpression analysis, points to an important function of miR171h to integrate the nutrient homeostasis in order to safeguard the expression domain of NSP2 during both, arbuscular mycorrhizal and root nodule symbiosis.
豆科植物具有形成根瘤和丛枝菌根共生的独特能力。这两种类型的根内共生均受NSP2调控,而NSP2是微小RNA171h(miR171h)的靶标。尽管最近的数据表明miR171h在蒺藜苜蓿根的伸长区特异性地限制丛枝菌根共生,但关于miR171h在不同生理和共生条件下表达的时空调控的知识有限。
我们表明miR171h从一个异常长的初级转录本中功能性表达,该转录本先前预测编码两条相同的miR171h链。miR171h和NSP2转录本均呈现复杂的调控模式,这涉及植物的共生状态和施肥方式。定量实时PCR显示,除了在菌根根中,miR171h和NSP2转录本水平在所有测试条件下均呈现明显的负相关,在菌根根中尽管miR171h表达增加,但NSP2转录本水平仍被诱导。这也得到了NSP2和MtPt4转录本水平的明显相关性的支持,MtPt4是一种在功能性丛枝菌根共生中特异性表达的磷酸盐转运蛋白。miR171h在充足磷酸盐条件下生长的植物中被强烈诱导,我们证明这与CRE1信号通路无关,并且在菌根根中NSP2的转录诱导也不需要它。对这两个基因的原位杂交和启动子活性分析证实了涉及共生状态、磷和氮营养的复杂调控,其中这两个基因呈现主要相互排斥的表达模式。在蒺藜苜蓿根中过表达miR171h导致菌根定殖减少以及苜蓿中华根瘤菌结瘤减少。
miR171h和NSP2的时空表达与植物的营养状况紧密相关,并且与过表达分析的结果一起,表明miR171h在整合营养稳态方面具有重要功能,以便在丛枝菌根和根瘤共生过程中保障NSP2的表达域。