Suppr超能文献

硅纳米球低聚物在可见光波长下的磁致前向散射

Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers.

作者信息

Yan J H, Liu P, Lin Z Y, Wang H, Chen H J, Wang C X, Yang G W

机构信息

State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Physics &Engineering, Sun Yat-sen University, Guangdong 510275, , China.

出版信息

Nat Commun. 2015 May 5;6:7042. doi: 10.1038/ncomms8042.

Abstract

Electromagnetically induced transparency is a type of quantum interference that induces near-zero reflection and near-perfect transmission. As a classical analogy, metal nanostructure plasmonic 'molecules' produce plasmon-induced transparency conventionally. Herein, an electromagnetically induced transparency interaction is demonstrated in silicon nanosphere oligomers, wherein the strong magnetic resonance couples with the electric gap mode effectively to markedly suppress reflection. As a result, a narrow-band transparency window created at visible wavelengths, called magnetically induced transparency, is easily realized in nearly touching silicon nanospheres, exhibiting low dependence on the number of spheres and aggregate states compared with plasmon induced transparency. A hybridization mechanism between magnetic and electric modes is proposed to pursue the physical origin, which is crucial to build all-dielectric metamaterials. Remarkably, magnetic induced transparency effect exhibiting near-zero reflection and near-perfect transmission causes light to propagate with no extra phase change. This makes silicon nanosphere oligomers promising as a unit cell in epsilon-near-zero metamaterials.

摘要

电磁诱导透明是一种量子干涉,它能产生接近零的反射和近乎完美的透射。作为一个经典类比,金属纳米结构等离子体“分子”通常会产生等离子体诱导透明。在此,在硅纳米球低聚物中展示了电磁诱导透明相互作用,其中强磁共振与电隙模式有效耦合,从而显著抑制反射。结果,在近接触的硅纳米球中很容易在可见波长处产生一个称为磁诱导透明的窄带透明窗口,与等离子体诱导透明相比,它对球的数量和聚集状态的依赖性较低。为探究其物理起源,提出了磁模式与电模式之间的杂化机制,这对于构建全介质超材料至关重要。值得注意的是,磁诱导透明效应表现出接近零的反射和近乎完美的透射,使光在传播时没有额外的相位变化。这使得硅纳米球低聚物有望成为近零介电常数超材料中的一个晶胞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/118c/4432586/1a2268a61feb/ncomms8042-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验