Suppr超能文献

与一种细胞渗透性抑制剂结合的β-半乳糖苷酶的2.2埃分辨率冷冻电镜结构。

2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor.

作者信息

Bartesaghi Alberto, Merk Alan, Banerjee Soojay, Matthies Doreen, Wu Xiongwu, Milne Jacqueline L S, Subramaniam Sriram

机构信息

Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Science. 2015 Jun 5;348(6239):1147-51. doi: 10.1126/science.aab1576. Epub 2015 May 7.

Abstract

Cryo-electron microscopy (cryo-EM) is rapidly emerging as a powerful tool for protein structure determination at high resolution. Here we report the structure of a complex between Escherichia coli β-galactosidase and the cell-permeant inhibitor phenylethyl β-D-thiogalactopyranoside (PETG), determined by cryo-EM at an average resolution of ~2.2 angstroms (Å). Besides the PETG ligand, we identified densities in the map for ~800 water molecules and for magnesium and sodium ions. Although it is likely that continued advances in detector technology may further enhance resolution, our findings demonstrate that preparation of specimens of adequate quality and intrinsic protein flexibility, rather than imaging or image-processing technologies, now represent the major bottlenecks to routinely achieving resolutions close to 2 Å using single-particle cryo-EM.

摘要

冷冻电子显微镜(cryo-EM)正迅速成为一种用于高分辨率蛋白质结构测定的强大工具。在此,我们报告了大肠杆菌β-半乳糖苷酶与细胞渗透性抑制剂苯基乙基β-D-硫代半乳糖吡喃糖苷(PETG)之间复合物的结构,该结构通过冷冻电子显微镜测定,平均分辨率约为2.2埃(Å)。除了PETG配体,我们在图谱中还识别出了约800个水分子以及镁离子和钠离子的密度。尽管探测器技术的持续进步可能会进一步提高分辨率,但我们的研究结果表明,制备质量足够且蛋白质具有固有灵活性的标本,而非成像或图像处理技术,目前是使用单颗粒冷冻电子显微镜常规实现接近2 Å分辨率的主要瓶颈。

相似文献

1
2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor.
Science. 2015 Jun 5;348(6239):1147-51. doi: 10.1126/science.aab1576. Epub 2015 May 7.
2
Structure of β-galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy.
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11709-14. doi: 10.1073/pnas.1402809111. Epub 2014 Jul 28.
3
Atomic Resolution Cryo-EM Structure of β-Galactosidase.
Structure. 2018 Jun 5;26(6):848-856.e3. doi: 10.1016/j.str.2018.04.004. Epub 2018 May 10.
5
Development of photoswitchable inhibitors for β-galactosidase.
Org Biomol Chem. 2018 Oct 17;16(40):7430-7437. doi: 10.1039/c8ob02122h.
6
Targeting of lacZ reporter gene expression with radioiodine-labelled phenylethyl-beta- d-thiogalactopyranoside.
Eur J Nucl Med Mol Imaging. 2004 Mar;31(3):433-8. doi: 10.1007/s00259-003-1395-7. Epub 2004 Jan 27.
8
Beam-induced motion correction for sub-megadalton cryo-EM particles.
Elife. 2014 Aug 13;3:e03665. doi: 10.7554/eLife.03665.
9
Processing of Structurally Heterogeneous Cryo-EM Data in RELION.
Methods Enzymol. 2016;579:125-57. doi: 10.1016/bs.mie.2016.04.012. Epub 2016 May 31.
10
A Super-Clustering Approach for Fully Automated Single Particle Picking in Cryo-EM.
Genes (Basel). 2019 Aug 30;10(9):666. doi: 10.3390/genes10090666.

引用本文的文献

1
Purifying recombinant proteins from Nicotiana benthamiana for structural studies.
Nat Protoc. 2025 Sep 9. doi: 10.1038/s41596-025-01249-2.
2
Self-supervised learning for generalizable particle picking in cryo-EM micrographs.
Cell Rep Methods. 2025 Jul 21;5(7):101089. doi: 10.1016/j.crmeth.2025.101089. Epub 2025 Jul 7.
3
Emerging gut microbial glycoside hydrolase inhibitors.
RSC Chem Biol. 2025 Jun 11. doi: 10.1039/d5cb00050e.
4
Multi-target detection with application to cryo-electron microscopy.
Inverse Probl. 2019 Oct;35(10). doi: 10.1088/1361-6420/ab2aec. Epub 2019 Sep 4.
5
Toward Single Particle Reconstruction without Particle Picking: Breaking the Detection Limit.
SIAM J Imaging Sci. 2023;16(2):886-910. doi: 10.1137/22m1503828.
6
GOLEM: Automated and Robust Cryo-EM-Guided Ligand Docking with Explicit Water Molecules.
J Chem Inf Model. 2024 Jul 22;64(14):5680-5690. doi: 10.1021/acs.jcim.4c00917. Epub 2024 Jul 11.
8
Signal enhancement for two-dimensional cryo-EM data processing.
Biol Imaging. 2023 Mar 9;3:e7. doi: 10.1017/S2633903X23000065. eCollection 2023.
9
Multiple-image super-resolution of cryo-electron micrographs based on deep internal learning.
Biol Imaging. 2023 Feb 9;3:e3. doi: 10.1017/S2633903X2300003X. eCollection 2023.
10
Cryo-electron microscopy-based drug design.
Front Mol Biosci. 2024 Mar 4;11:1342179. doi: 10.3389/fmolb.2024.1342179. eCollection 2024.

本文引用的文献

1
Atomic structure of anthrax protective antigen pore elucidates toxin translocation.
Nature. 2015 May 28;521(7553):545-9. doi: 10.1038/nature14247. Epub 2015 Mar 16.
3
Structure of the E. coli ribosome-EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM.
Nature. 2015 Apr 23;520(7548):567-70. doi: 10.1038/nature14275. Epub 2015 Feb 23.
4
Capsid expansion mechanism of bacteriophage T7 revealed by multistate atomic models derived from cryo-EM reconstructions.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4606-14. doi: 10.1073/pnas.1407020111. Epub 2014 Oct 13.
5
Structural basis for organohalide respiration.
Science. 2014 Oct 24;346(6208):455-8. doi: 10.1126/science.1258118. Epub 2014 Oct 2.
6
The complete structure of the large subunit of the mammalian mitochondrial ribosome.
Nature. 2014 Nov 13;515(7526):283-6. doi: 10.1038/nature13895. Epub 2014 Sep 1.
8
Structure of β-galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy.
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11709-14. doi: 10.1073/pnas.1402809111. Epub 2014 Jul 28.
9
Three-dimensional structure of human γ-secretase.
Nature. 2014 Aug 14;512(7513):166-170. doi: 10.1038/nature13567. Epub 2014 Jun 29.
10
Structure of the yeast mitochondrial large ribosomal subunit.
Science. 2014 Mar 28;343(6178):1485-1489. doi: 10.1126/science.1249410.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验