Ning Hailong, Pikul James H, Zhang Runyu, Li Xuejiao, Xu Sheng, Wang Junjie, Rogers John A, King William P, Braun Paul V
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801; and.
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Proc Natl Acad Sci U S A. 2015 May 26;112(21):6573-8. doi: 10.1073/pnas.1423889112. Epub 2015 May 11.
As sensors, wireless communication devices, personal health monitoring systems, and autonomous microelectromechanical systems (MEMS) become distributed and smaller, there is an increasing demand for miniaturized integrated power sources. Although thin-film batteries are well-suited for on-chip integration, their energy and power per unit area are limited. Three-dimensional electrode designs have potential to offer much greater power and energy per unit area; however, efforts to date to realize 3D microbatteries have led to prototypes with solid electrodes (and therefore low power) or mesostructured electrodes not compatible with manufacturing or on-chip integration. Here, we demonstrate an on-chip compatible method to fabricate high energy density (6.5 μWh cm(-2)⋅μm(-1)) 3D mesostructured Li-ion microbatteries based on LiMnO2 cathodes, and NiSn anodes that possess supercapacitor-like power (3,600 μW cm(-2)⋅μm(-1) peak). The mesostructured electrodes are fabricated by combining 3D holographic lithography with conventional photolithography, enabling deterministic control of both the internal electrode mesostructure and the spatial distribution of the electrodes on the substrate. The resultant full cells exhibit impressive performances, for example a conventional light-emitting diode (LED) is driven with a 500-μA peak current (600-C discharge) from a 10-μm-thick microbattery with an area of 4 mm(2) for 200 cycles with only 12% capacity fade. A combined experimental and modeling study where the structural parameters of the battery are modulated illustrates the unique design flexibility enabled by 3D holographic lithography and provides guidance for optimization for a given application.
随着传感器、无线通信设备、个人健康监测系统以及自主微机电系统(MEMS)变得更加分散且体积更小,对小型化集成电源的需求日益增加。尽管薄膜电池非常适合片上集成,但其每单位面积的能量和功率有限。三维电极设计有潜力提供更高的每单位面积功率和能量;然而,迄今为止实现三维微型电池的努力导致了具有固体电极(因此功率较低)或与制造或片上集成不兼容的介观结构电极的原型。在此,我们展示了一种基于LiMnO₂阴极和具有超级电容器般功率(峰值为3600 μW cm⁻²·μm⁻¹)的NiSn阳极来制造高能量密度(6.5 μWh cm⁻²·μm⁻¹)三维介观结构锂离子微型电池的片上兼容方法。介观结构电极是通过将三维全息光刻与传统光刻相结合制造的,能够确定性地控制内部电极介观结构以及电极在基板上的空间分布。所得的全电池表现出令人印象深刻的性能,例如,一个10μm厚、面积为4 mm²的微型电池在200次循环中以500μA峰值电流(600 - C放电)驱动一个传统发光二极管(LED),容量仅衰减12%。一项对电池结构参数进行调制的实验与建模相结合的研究表明了三维全息光刻所带来的独特设计灵活性,并为特定应用的优化提供了指导。