Fernández-Fueyo Elena, Linde Dolores, Almendral David, López-Lucendo María F, Ruiz-Dueñas Francisco J, Martínez Angel T
Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040, Madrid, Spain.
Appl Microbiol Biotechnol. 2015 Nov;99(21):8927-42. doi: 10.1007/s00253-015-6665-3. Epub 2015 May 13.
Two phylogenetically divergent genes of the new family of dye-decolorizing peroxidases (DyPs) were found during comparison of the four DyP genes identified in the Pleurotus ostreatus genome with over 200 DyP genes from other basidiomycete genomes. The heterologously expressed enzymes (Pleos-DyP1 and Pleos-DyP4, following the genome nomenclature) efficiently oxidize anthraquinoid dyes (such as Reactive Blue 19), which are characteristic DyP substrates, as well as low redox-potential dyes (such as 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) and substituted phenols. However, only Pleos-DyP4 oxidizes the high redox-potential dye Reactive Black 5, at the same time that it displays high thermal and pH stability. Unexpectedly, both enzymes also oxidize Mn(2+) to Mn(3+), albeit with very different catalytic efficiencies. Pleos-DyP4 presents a Mn(2+) turnover (56 s(-1)) nearly in the same order of the two other Mn(2+)-oxidizing peroxidase families identified in the P. ostreatus genome: manganese peroxidases (100 s(-1) average turnover) and versatile peroxidases (145 s(-1) average turnover), whose genes were also heterologously expressed. Oxidation of Mn(2+) has been reported for an Amycolatopsis DyP (24 s(-1)) and claimed for other bacterial DyPs, albeit with lower activities, but this is the first time that Mn(2+) oxidation is reported for a fungal DyP. Interestingly, Pleos-DyP4 (together with ligninolytic peroxidases) is detected in the secretome of P. ostreatus grown on different lignocellulosic substrates. It is suggested that generation of Mn(3+) oxidizers plays a role in the P. ostreatus white-rot lifestyle since three different families of Mn(2+)-oxidizing peroxidase genes are present in its genome being expressed during lignocellulose degradation.
在将糙皮侧耳基因组中鉴定出的4个DyP基因与来自其他担子菌基因组的200多个DyP基因进行比较时,发现了新的染料脱色过氧化物酶(DyP)家族中两个系统发育上不同的基因。异源表达的酶(按照基因组命名法为Pleos-DyP1和Pleos-DyP4)能够高效氧化蒽醌类染料(如活性蓝19,这是典型的DyP底物)以及低氧化还原电位染料(如2,2-偶氮双-(3-乙基苯并噻唑啉-6-磺酸))和取代酚。然而,只有Pleos-DyP4能够氧化高氧化还原电位染料活性黑5,同时它还表现出高热稳定性和pH稳定性。出乎意料的是,这两种酶都能将Mn(2+)氧化为Mn(3+),尽管催化效率差异很大。Pleos-DyP4的Mn(2+)周转数(56 s(-1))与糙皮侧耳基因组中鉴定出的另外两个氧化Mn(2+)的过氧化物酶家族几乎处于同一水平:锰过氧化物酶(平均周转数100 s(-1))和多功能过氧化物酶(平均周转数145 s(-1)),它们的基因也进行了异源表达。据报道,一株拟无枝酸菌的DyP能够氧化Mn(2+)(周转数为24 s(-1)),其他细菌DyP也有此能力,尽管活性较低,但这是首次报道真菌DyP能够氧化Mn(2+)。有趣的是,在生长于不同木质纤维素底物上的糙皮侧耳的分泌组中检测到了Pleos-DyP4(以及木质素分解过氧化物酶)。由于糙皮侧耳基因组中存在三个不同的氧化Mn(2+)的过氧化物酶基因家族,且在木质纤维素降解过程中表达,因此推测Mn(3+)氧化剂的产生在糙皮侧耳的白腐生活方式中发挥作用。