Suppr超能文献

利用男性骨质疏松性骨折研究中的皮质骨图谱(CBM)预测髋部骨折类型。

Predicting Hip Fracture Type With Cortical Bone Mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) Study.

机构信息

Department of Engineering, University of Cambridge, Cambridge, UK.

Research Scientist and Radiography Consultant, Granville Ferry, Nova Scotia, Canada.

出版信息

J Bone Miner Res. 2015 Nov;30(11):2067-77. doi: 10.1002/jbmr.2552. Epub 2015 Jul 14.

Abstract

Hip fracture risk is known to be related to material properties of the proximal femur, but fracture prediction studies adding richer quantitative computed tomography (QCT) measures to dual-energy X-ray (DXA)-based methods have shown limited improvement. Fracture types have distinct relationships to predictors, but few studies have subdivided fracture into types, because this necessitates regional measurements and more fracture cases. This work makes use of cortical bone mapping (CBM) to accurately assess, with no prior anatomical presumptions, the distribution of properties related to fracture type. CBM uses QCT data to measure the cortical and trabecular properties, accurate even for thin cortices below the imaging resolution. The Osteoporotic Fractures in Men (MrOS) study is a predictive case-cohort study of men over 65 years old: we analyze 99 fracture cases (44 trochanteric and 55 femoral neck) compared to a cohort of 308, randomly selected from 5994. To our knowledge, this is the largest QCT-based predictive hip fracture study to date, and the first to incorporate CBM analysis into fracture prediction. We show that both cortical mass surface density and endocortical trabecular BMD are significantly different in fracture cases versus cohort, in regions appropriate to fracture type. We incorporate these regions into predictive models using Cox proportional hazards regression to estimate hazard ratios, and logistic regression to estimate area under the receiver operating characteristic curve (AUC). Adding CBM to DXA-based BMD leads to a small but significant (p < 0.005) improvement in model prediction for any fracture, with AUC increasing from 0.78 to 0.79, assessed using leave-one-out cross-validation. For specific fracture types, the improvement is more significant (p < 0.0001), with AUC increasing from 0.71 to 0.77 for trochanteric fractures and 0.76 to 0.82 for femoral neck fractures. In contrast, adding DXA-based BMD to a CBM-based predictive model does not result in any significant improvement.

摘要

髋部骨折风险与股骨近端的材料特性有关,但在基于双能 X 射线(DXA)的方法中增加更丰富的定量计算机断层扫描(QCT)测量值的骨折预测研究表明,改善效果有限。骨折类型与预测因子有明显的关系,但很少有研究将骨折分为类型,因为这需要进行区域测量和更多的骨折病例。这项工作利用皮质骨映射(CBM)来准确评估与骨折类型相关的特性分布,而无需事先进行解剖假设。CBM 使用 QCT 数据来测量皮质和小梁特性,即使对于低于成像分辨率的薄皮质也能准确测量。男性骨质疏松性骨折(MrOS)研究是一项针对 65 岁以上男性的预测病例队列研究:我们分析了 99 例骨折病例(44 例转子间骨折和 55 例股骨颈骨折),并与 5994 例中的 308 例随机队列进行了比较。据我们所知,这是迄今为止最大的基于 QCT 的预测髋部骨折研究,也是第一个将 CBM 分析纳入骨折预测的研究。我们表明,在与队列相比,在适当的骨折类型区域,皮质骨质量表面密度和内皮质小梁 BMD 在骨折病例中均有显著差异。我们使用 Cox 比例风险回归将这些区域纳入预测模型,以估计风险比,并使用逻辑回归估计接收者操作特征曲线下的面积(AUC)。将 CBM 与基于 DXA 的 BMD 结合使用,可使任何骨折的模型预测略有但显著提高(p < 0.005),使用留一法交叉验证评估,AUC 从 0.78 增加到 0.79。对于特定的骨折类型,改善更为显著(p < 0.0001),转子间骨折的 AUC 从 0.71 增加到 0.77,股骨颈骨折的 AUC 从 0.76 增加到 0.82。相比之下,将基于 DXA 的 BMD 增加到基于 CBM 的预测模型中不会导致任何显著的改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fd5/4657505/738b4e7de8b2/jbmr0030-2067-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验