Suppr超能文献

头足类软体动物复杂大脑进化中趋同与平行进化的分子证据:来自视觉系统的见解

Molecular Evidence for Convergence and Parallelism in Evolution of Complex Brains of Cephalopod Molluscs: Insights from Visual Systems.

作者信息

Yoshida M A, Ogura A, Ikeo K, Shigeno S, Moritaki T, Winters G C, Kohn A B, Moroz L L

机构信息

*Research Fellow of the Japan Society for the Promotion of Science; Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan; Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan;

Department of Computer Bioscience, Nagahama Institute of Bio-science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 Japan;

出版信息

Integr Comp Biol. 2015 Dec;55(6):1070-83. doi: 10.1093/icb/icv049. Epub 2015 May 21.

Abstract

Coleoid cephalopods show remarkable evolutionary convergence with vertebrates in their neural organization, including (1) eyes and visual system with optic lobes, (2) specialized parts of the brain controlling learning and memory, such as vertical lobes, and (3) unique vasculature supporting such complexity of the central nervous system. We performed deep sequencing of eye transcriptomes of pygmy squids (Idiosepius paradoxus) and chambered nautiluses (Nautilus pompilius) to decipher the molecular basis of convergent evolution in cephalopods. RNA-seq was complemented by in situ hybridization to localize the expression of selected genes. We found three types of genomic innovations in the evolution of complex brains: (1) recruitment of novel genes into morphogenetic pathways, (2) recombination of various coding and regulatory regions of different genes, often called "evolutionary tinkering" or "co-option", and (3) duplication and divergence of genes. Massive recruitment of novel genes occurred in the evolution of the "camera" eye from nautilus' "pinhole" eye. We also showed that the type-2 co-option of transcription factors played important roles in the evolution of the lens and visual neurons. In summary, the cephalopod convergent morphological evolution of the camera eyes was driven by a mosaic of all types of gene recruitments. In addition, our analysis revealed unexpected variations of squids' opsins, retinochromes, and arrestins, providing more detailed information, valuable for further research on intra-ocular and extra-ocular photoreception of the cephalopods.

摘要

头足纲软体动物在神经组织方面与脊椎动物表现出显著的进化趋同,包括:(1)具有视叶的眼睛和视觉系统;(2)大脑中控制学习和记忆的特化部分,如垂直叶;(3)支持中枢神经系统如此复杂结构的独特脉管系统。我们对头足类动物(侏儒乌贼和鹦鹉螺)的眼睛转录组进行了深度测序,以解读头足类动物趋同进化的分子基础。RNA测序辅以原位杂交来定位选定基因的表达。我们在复杂大脑的进化过程中发现了三种类型的基因组创新:(1)新基因被招募到形态发生途径中;(2)不同基因的各种编码和调控区域发生重组,通常称为“进化修补”或“基因借用”;(3)基因的复制和分化。从鹦鹉螺的“针孔”眼进化到“相机”眼的过程中发生了大量新基因的招募。我们还表明,转录因子的2型基因借用在晶状体和视觉神经元的进化中发挥了重要作用。总之,头足类动物“相机”眼的趋同形态进化是由所有类型基因招募的组合驱动的。此外,我们的分析揭示了乌贼视蛋白、视网膜色素和抑制蛋白的意外变异,为进一步研究头足类动物眼内和眼外光感受提供了更详细的信息,具有重要价值。

相似文献

3
Transcriptome analysis of Nautilus and pygmy squid developing eye provides insights in lens and eye evolution.
PLoS One. 2013 Oct 16;8(10):e78054. doi: 10.1371/journal.pone.0078054. eCollection 2013.
7
Cephalopod versus vertebrate eyes.
Curr Biol. 2023 Oct 23;33(20):R1100-R1105. doi: 10.1016/j.cub.2023.07.049.
10
The genome of Nautilus pompilius illuminates eye evolution and biomineralization.
Nat Ecol Evol. 2021 Jul;5(7):927-938. doi: 10.1038/s41559-021-01448-6. Epub 2021 May 10.

引用本文的文献

1
Expression of proteins supporting visual function in heterobranch gastropods.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2025 Jan;211(1):19-34. doi: 10.1007/s00359-024-01712-7. Epub 2024 Aug 9.
2
A possible origin of the inverted vertebrate retina revealed by physical modeling.
J Biol Phys. 2024 Dec;50(3-4):327-349. doi: 10.1007/s10867-024-09662-6. Epub 2024 Aug 3.
3
Embryonic development of a centralised brain in coleoid cephalopods.
Neural Dev. 2024 Jun 21;19(1):8. doi: 10.1186/s13064-024-00186-2.
4
Molluscan Genomes Reveal Extensive Differences in Photopigment Evolution Across the Phylum.
Mol Biol Evol. 2023 Dec 1;40(12). doi: 10.1093/molbev/msad263.
5
Chemical cognition: chemoconnectomics and convergent evolution of integrative systems in animals.
Anim Cogn. 2023 Nov;26(6):1851-1864. doi: 10.1007/s10071-023-01833-7. Epub 2023 Nov 28.
6
Distinct and shared endothermic strategies in the heat producing tissues of tuna and other teleosts.
Sci China Life Sci. 2023 Nov;66(11):2629-2645. doi: 10.1007/s11427-022-2312-1. Epub 2023 May 31.
7
Duplication and Losses of Opsin Genes in Lophotrochozoan Evolution.
Mol Biol Evol. 2023 Apr 4;40(4). doi: 10.1093/molbev/msad066.
8
The Genome of the Marine Rotifer Brachionus manjavacas: Genome-Wide Identification of 310 G Protein-Coupled Receptor (GPCR) Genes.
Mar Biotechnol (NY). 2022 Mar;24(1):226-242. doi: 10.1007/s10126-022-10102-6. Epub 2022 Mar 9.
9
Diffusion MRI Connections in the Octopus Brain.
Exp Neurobiol. 2022 Feb 28;31(1):17-28. doi: 10.5607/en21047.
10
Neurotransmission and neuromodulation systems in the learning and memory network of Octopus vulgaris.
J Morphol. 2022 May;283(5):557-584. doi: 10.1002/jmor.21459. Epub 2022 Feb 8.

本文引用的文献

1
Distinct roles of arrestin 1 protein in photoreceptors during Drosophila development.
J Biol Chem. 2014 Jun 27;289(26):18526-34. doi: 10.1074/jbc.M114.571224. Epub 2014 May 16.
2
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.
Bioinformatics. 2014 May 1;30(9):1312-3. doi: 10.1093/bioinformatics/btu033. Epub 2014 Jan 21.
3
Physiology of invertebrate oxytocin and vasopressin neuropeptides.
Exp Physiol. 2014 Jan;99(1):55-61. doi: 10.1113/expphysiol.2013.072561. Epub 2013 Aug 16.
4
Analysis Tool Web Services from the EMBL-EBI.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W597-600. doi: 10.1093/nar/gkt376. Epub 2013 May 13.
5
Expression dynamics and protein localization of rhabdomeric opsins in Platynereis larvae.
Integr Comp Biol. 2013 Jul;53(1):7-16. doi: 10.1093/icb/ict046. Epub 2013 May 10.
7
Insights into bilaterian evolution from three spiralian genomes.
Nature. 2013 Jan 24;493(7433):526-31. doi: 10.1038/nature11696. Epub 2012 Dec 19.
8
The oyster genome reveals stress adaptation and complexity of shell formation.
Nature. 2012 Oct 4;490(7418):49-54. doi: 10.1038/nature11413. Epub 2012 Sep 19.
9
Cell fate determination in the vertebrate retina.
Trends Neurosci. 2012 Sep;35(9):565-73. doi: 10.1016/j.tins.2012.05.004. Epub 2012 Jun 15.
10
miR-124, miR-125b, let-7 and vesicle transport proteins in squid lenses in L. pealei.
Curr Eye Res. 2012 May;37(5):388-94. doi: 10.3109/02713683.2011.635833. Epub 2012 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验