Suppr超能文献

关于连接。

About connections.

作者信息

Rockland Kathleen S

机构信息

Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA ; Cold Spring Harbor Laboratory, Cold Spring Harbor NY, USA.

出版信息

Front Neuroanat. 2015 May 20;9:61. doi: 10.3389/fnana.2015.00061. eCollection 2015.

Abstract

Despite the attention attracted by "connectomics", one can lose sight of the very real questions concerning "What are connections?" In the neuroimaging community, "structural" connectivity is ground truth and underlying constraint on "functional" or "effective" connectivity. It is referenced to underlying anatomy; but, as increasingly remarked, there is a large gap between the wealth of human brain mapping and the relatively scant data on actual anatomical connectivity. Moreover, connections have typically been discussed as "pairwise", point x projecting to point y (or: to points y and z), or more recently, in graph theoretical terms, as "nodes" or regions and the interconnecting "edges". This is a convenient shorthand, but tends not to capture the richness and nuance of basic anatomical properties as identified in the classic tradition of tracer studies. The present short review accordingly revisits connectional weights, heterogeneity, reciprocity, topography, and hierarchical organization, drawing on concrete examples. The emphasis is on presynaptic long-distance connections, motivated by the intention to probe current assumptions and promote discussions about further progress and synthesis.

摘要

尽管“连接组学”备受关注,但人们可能会忽略有关“连接是什么?”的非常现实的问题。在神经成像领域,“结构”连接是“功能”或“有效”连接的基本事实和潜在约束。它以潜在的解剖结构为参考;但是,正如越来越多的人指出的那样,丰富的人类脑图谱与相对较少的实际解剖连接数据之间存在很大差距。此外,连接通常被讨论为“成对的”,即点x投射到点y(或者:投射到点y和z),或者最近,从图论的角度来看,是“节点”或区域以及相互连接的“边”。这是一种方便的简写方式,但往往无法捕捉到示踪剂研究经典传统中所确定的基本解剖学特性的丰富性和细微差别。因此,本简短综述借助具体实例,重新审视连接权重、异质性、互惠性、拓扑结构和层次组织。重点是突触前长距离连接,目的是探究当前的假设,并促进关于进一步进展和综合的讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddae/4438223/c89c7f828c27/fnana-09-00061-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验