Institut Jean-Pierre Bourgin, UMR1318, Institut National pour la Recherche Agronomique-AgroParisTech, Saclay Plant Science, Route De St-Cyr, Versailles 78026, France; Laboratoire Matières et Systèmes Complexes, Université Paris Diderot, UFR de Physique de Paris 7, 10 rue Alice Domon et Léonie Duquet, Paris 75205, France; Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.
Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.
Curr Biol. 2015 Jun 29;25(13):1746-52. doi: 10.1016/j.cub.2015.05.022. Epub 2015 Jun 11.
Complex shapes in biology depend on the ability of cells to shift from isotropic to anisotropic growth during development. In plants, this growth symmetry breaking reflects changes in the extensibility of the cell walls. The textbook view is that the direction of turgor-driven cell expansion depends on the cortical microtubule (CMT)-mediated orientation of cellulose microfibrils. Here, we show that this view is incomplete at best. We used atomic force microscopy (AFM) to study changes in cell-wall mechanics associated with growth symmetry breaking within the hypocotyl epidermis. We show that, first, growth symmetry breaking is preceded by an asymmetric loosening of longitudinal, as compared to transverse, anticlinal walls, in the absence of a change in CMT orientation. Second, this wall loosening is triggered by the selective de-methylesterification of cell-wall pectin in longitudinal walls, and, third, the resultant mechanical asymmetry is required for the growth symmetry breaking. Indeed, preventing or promoting pectin de-methylesterification, respectively, increased or decreased the stiffness of all the cell walls, but in both cases reduced the growth anisotropy. Finally, we show that the subsequent CMT reorientation contributes to the consolidation of the growth axis but is not required for the growth symmetry breaking. We conclude that growth symmetry breaking is controlled at a cellular scale by bipolar pectin de-methylesterification, rather than by the cellulose-dependent mechanical anisotropy of the cell walls themselves. Such a cell asymmetry-driven mechanism is comparable to that underlying tip growth in plants but also anisotropic cell growth in animal cells.
生物中的复杂形状取决于细胞在发育过程中从各向同性向各向异性生长转变的能力。在植物中,这种生长对称性的破坏反映了细胞壁可伸展性的变化。教科书观点认为,膨压驱动的细胞扩展方向取决于皮层微管(CMT)介导的纤维素微纤丝的取向。在这里,我们表明这种观点至少是不完整的。我们使用原子力显微镜(AFM)研究了与下胚轴表皮生长对称性破坏相关的细胞壁力学变化。我们表明,首先,在 CMT 取向没有变化的情况下,与横向的垂周壁相比,纵向的垂周壁首先出现不对称的松弛,从而打破了生长对称性。其次,这种壁松弛是由纵向壁中细胞壁果胶的选择性脱甲酯化触发的,第三,由此产生的机械不对称性是生长对称性破坏所必需的。事实上,分别阻止或促进果胶脱甲酯化分别增加或降低了所有细胞壁的刚度,但在这两种情况下都降低了生长各向异性。最后,我们表明随后的 CMT 重新取向有助于巩固生长轴,但不是生长对称性破坏所必需的。我们得出的结论是,生长对称性的破坏是由双极果胶脱甲酯化在细胞尺度上控制的,而不是由细胞壁本身的纤维素依赖性机械各向异性控制的。这种细胞不对称驱动的机制类似于植物中尖端生长的机制,也类似于动物细胞中的各向异性细胞生长。