Suppr超能文献

在RAW 264.7巨噬细胞中获取具有高抗炎活性的茵陈提取物的提取优化。

Extraction optimization for obtaining Artemisia capillaris extract with high anti-inflammatory activity in RAW 264.7 macrophage cells.

作者信息

Jang Mi, Jeong Seung-Weon, Kim Bum-Keun, Kim Jong-Chan

机构信息

Korea Food Research Institute, 1201-62 Anyangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-746, Republic of Korea ; Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.

Korea Food Research Institute, 1201-62 Anyangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-746, Republic of Korea.

出版信息

Biomed Res Int. 2015;2015:872718. doi: 10.1155/2015/872718. Epub 2015 May 14.

Abstract

Plant extracts have been used as herbal medicines to treat a wide variety of human diseases. We used response surface methodology (RSM) to optimize the Artemisia capillaris Thunb. extraction parameters (extraction temperature, extraction time, and ethanol concentration) for obtaining an extract with high anti-inflammatory activity at the cellular level. The optimum ranges for the extraction parameters were predicted by superimposing 4-dimensional response surface plots of the lipopolysaccharide- (LPS-) induced PGE2 and NO production and by cytotoxicity of A. capillaris Thunb. extracts. The ranges of extraction conditions used for determining the optimal conditions were extraction temperatures of 57-65°C, ethanol concentrations of 45-57%, and extraction times of 5.5-6.8 h. On the basis of the results, a model with a central composite design was considered to be accurate and reliable for predicting the anti-inflammation activity of extracts at the cellular level. These approaches can provide a logical starting point for developing novel anti-inflammatory substances from natural products and will be helpful for the full utilization of A. capillaris Thunb. The crude extract obtained can be used in some A. capillaris Thunb.-related health care products.

摘要

植物提取物已被用作草药来治疗多种人类疾病。我们采用响应面法(RSM)优化茵陈蒿的提取参数(提取温度、提取时间和乙醇浓度),以获得在细胞水平上具有高抗炎活性的提取物。通过叠加脂多糖(LPS)诱导的PGE2和NO生成的四维响应面图以及茵陈蒿提取物的细胞毒性,预测了提取参数的最佳范围。用于确定最佳条件的提取条件范围为:提取温度57-65°C,乙醇浓度45-57%,提取时间5.5-6.8小时。基于这些结果,认为采用中心复合设计的模型对于预测提取物在细胞水平上的抗炎活性是准确可靠的。这些方法可为从天然产物开发新型抗炎物质提供一个合理的起点,并将有助于茵陈蒿的充分利用。所获得的粗提取物可用于一些与茵陈蒿相关的保健品中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3412/4446566/ad25ddf08b45/BMRI2015-872718.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验