Suppr超能文献

基于预处理技术和线性支持向量机的声学生物识别系统

Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

作者信息

del Val Lara, Izquierdo-Fuente Alberto, Villacorta Juan J, Raboso Mariano

机构信息

Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Expresión Gráfica de la Ingeniería, Ingeniería Cartográfica, Geodesia y Fotogrametría, Ingeniería Mecánica e Ingeniería de los Procesos de Fabricación, Área de Ingeniería Mecánica, Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain.

Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática, Universidad de Valladolid, Paseo Belén 15, 47011 Valladolid, Spain.

出版信息

Sensors (Basel). 2015 Jun 17;15(6):14241-60. doi: 10.3390/s150614241.

Abstract

Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

摘要

基于均方误差(MSE)分类器的声学生物识别系统的结果,实现了一种新的生物识别系统。这个新系统对声学图像进行预处理,提取多个参数,并最终基于支持向量机(SVM)对其进行分类。所使用的预处理技术包括空间滤波、基于高斯混合模型(GMM)的分割以将人物与背景分离、掩膜以减小图像尺寸以及二值化以减小每个图像的大小。给出了分类误差分析以及误差相对于每个实现算法的计算负担的敏感性研究。这允许根据系统所需的益处选择最相关的算法。通过减少分类误差、计算负担和存储需求,生物识别系统有了显著改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0dc/4507697/66eae5161dc2/sensors-15-14241-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验