†Bruker Biospin Corp., Billerica, Massachusetts 01821, United States.
‡Millikelvin Technologies, LLC, Braintree, Massachusetts 02184, United States.
J Am Chem Soc. 2015 Jul 8;137(26):8428-34. doi: 10.1021/jacs.5b01252. Epub 2015 Jun 29.
Hyperpolarization (HP) of nuclear spins is critical for ultrasensitive nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). We demonstrate an approach for >1500-fold enhancement of key small-molecule metabolites: 1-(13)C-pyruvic acid, 1-(13)C-sodium lactate, and 1-(13)C-acetic acid. The (13)C solution NMR signal of pyruvic acid was enhanced 1600-fold at B = 1 T and 40 °C by pre-polarizing at 14 T and ∼2.3 K. This "brute-force" approach uses only field and temperature to generate HP. The noted 1 T observation field is appropriate for benchtop NMR and near the typical 1.5 T of MRI, whereas high-field observation scales enhancement as 1/B. Our brute-force process ejects the frozen, solid sample from the low-T, high-B polarizer, passing it through low field (B < 100 G) to facilitate "thermal mixing". That equilibrates (1)H and (13)C in hundreds of milliseconds, providing (13)C HP from (1)H Boltzmann polarization attained at high B/T. The ejected sample arrives at a room-temperature, permanent magnet array, where rapid dissolution with 40 °C water yields HP solute. Transfer to a 1 T NMR system yields (13)C signals with enhancements at 80% of ideal for noted polarizing conditions. High-resolution NMR of the same product at 9.4 T had consistent enhancement plus resolution of (13)C shifts and J-couplings for pyruvic acid and its hydrate. Comparable HP was achieved with frozen aqueous lactate, plus notable enhancement of acetic acid, demonstrating broader applicability for small-molecule NMR and metabolic MRI. Brute-force avoids co-solvated free-radicals and microwaves that are essential to competing methods. Here, unadulterated samples obviate concerns about downstream purity and also exhibit slow solid-state spin relaxation, favorable for transporting HP samples.
核自旋的极化(HP)对于超灵敏的核磁共振(NMR)和磁共振成像(MRI)至关重要。我们展示了一种方法,可以将关键的小分子代谢物增强>1500 倍:1-(13)C-丙酮酸、1-(13)C-乳酸钠和 1-(13)C-乙酸。在 B = 1 T 和 40°C 下,通过在 14 T 和~2.3 K 下预极化,丙酮酸的(13)C 溶液 NMR 信号增强了 1600 倍。这种“强力”方法仅使用磁场和温度来产生 HP。注意到的 1 T 观测场适用于台式 NMR 且接近典型的 1.5 T MRI,而高场观测则按 1/B 缩放增强。我们的强力过程将冷冻的固体样品从低温、高磁场极化器中弹出,使其通过低场(B < 100 G)以促进“热混合”。这在数百毫秒内使(1)H 和(13)C 达到平衡,从高 B/T 下获得的(1)H 玻尔兹曼极化中提供(13)C HP。弹出的样品到达室温、永磁体阵列,在那里用 40°C 水快速溶解产生 HP 溶质。转移到 1 T NMR 系统可在注意到的极化条件下实现 80%的理想(13)C 信号增强。在 9.4 T 下对相同产物进行高分辨率 NMR 具有一致的增强以及(13)C 位移和 J 耦合的分辨率,用于丙酮酸及其水合物。冷冻水乳酸也实现了类似的 HP,以及显著增强的乙酸,这证明了小分子 NMR 和代谢 MRI 的更广泛适用性。强力方法避免了竞争方法所必需的共溶剂自由基和微波。在这里,未掺杂的样品避免了下游纯度的担忧,并且还表现出缓慢的固态自旋弛豫,有利于输送 HP 样品。