Suppr超能文献

使用低剂量胸部计算机断层扫描和开放获取的西比尔算法进行未来肺癌风险预测时图像重建参数的意义

Significance of Image Reconstruction Parameters for Future Lung Cancer Risk Prediction Using Low-Dose Chest Computed Tomography and the Open-Access Sybil Algorithm.

作者信息

Simon Judit, Mikhael Peter, Graur Alexander, Chang Allison E B, Skates Steven J, Osarogiagbon Raymond U, Sequist Lecia V, Fintelmann Florian J

机构信息

From the Division of Thoracic Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Boston, MA (J.S., A.G., F.J.F.); Harvard Medical School, Boston, MA (J.S., A.E.B.C., S.J.S., L.V.S., F.J.F.); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA (P.M.); Jameel Clinic, Massachusetts Institute of Technology, Cambridge, MA (P.M.); Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA (A.E.B.C., L.V.S.); Department of Medicine, MGH Biostatistics, Massachusetts General Hospital, Boston MA (S.J.S.); and Multidisciplinary Thoracic Oncology Program, Baptist Cancer Center, Memphis, TN (R.U.O.).

出版信息

Invest Radiol. 2025 May 1;60(5):311-318. doi: 10.1097/RLI.0000000000001131. Epub 2024 Oct 23.

Abstract

PURPOSE

Sybil is a validated publicly available deep learning-based algorithm that can accurately predict lung cancer risk from a single low-dose computed tomography (LDCT) scan. We aimed to study the effect of image reconstruction parameters and CT scanner manufacturer on Sybil's performance.

MATERIALS AND METHODS

Using LDCTs of a subset of the National Lung Screening Trial participants, which we previously used for internal validation of the Sybil algorithm (test set), we ran the Sybil algorithm on LDCT series pairs matched on kilovoltage peak, milliampere-seconds, reconstruction interval, reconstruction diameter, and either reconstruction filter or axial slice thickness. We also evaluated the cumulative effect of these parameters by combining the best- and the worst-performing parameters. A subanalysis compared Sybil's performance by CT manufacturer. We considered any LDCT positive if future lung cancer was subsequently confirmed by biopsy or surgical resection. The areas under the curve (AUCs) for each series pair were compared using DeLong's test.

RESULTS

There was no difference in Sybil's performance between 1049 pairs of standard versus bone reconstruction filter (AUC at 1 year 0.84 [95% confidence interval (CI): 0.70-0.99] vs 0.86 [95% CI: 0.75-0.98], P = 0.87) and 1961 pairs of standard versus lung reconstruction filter (AUC at 1 year 0.98 [95% CI: 0.97-0.99] vs 0.98 [95% CI: 0.96-0.99], P = 0.81). Similarly, there was no difference in 1288 pairs comparing 2-mm versus 5-mm axial slice thickness (AUC at 1 year 0.98 [95% CI: 0.94-1.00] vs 0.99 [95% CI: 0.97-0.99], P = 0.68). The best-case scenario combining a lung reconstruction filter with 2-mm slice thickness compared with the worst-case scenario combining a bone reconstruction filter with 2.5-mm slice thickness uncovered a significantly different performance at years 2-4 ( P = 0.03). Subanalysis showed no significant difference in performance between Siemens and Toshiba scanners.

CONCLUSIONS

Sybil's predictive performance for future lung cancer risk is robust across different reconstruction filters and axial slice thicknesses, demonstrating its versatility in various imaging settings. Combining favorable reconstruction parameters can significantly enhance predictive ability at years 2-4. The absence of significant differences between Siemens and Toshiba scanners further supports Sybil's versatility.

摘要

目的

Sybil是一种经过验证的基于深度学习的公开可用算法,它可以通过单次低剂量计算机断层扫描(LDCT)准确预测肺癌风险。我们旨在研究图像重建参数和CT扫描仪制造商对Sybil性能的影响。

材料与方法

我们使用了国家肺癌筛查试验参与者子集的LDCT,此前我们曾将其用于Sybil算法的内部验证(测试集),我们在千伏峰值、毫安秒、重建间隔、重建直径以及重建滤波器或轴向切片厚度相匹配的LDCT系列对上运行Sybil算法。我们还通过组合最佳和最差性能参数来评估这些参数的累积效应。一项亚分析比较了不同CT制造商的Sybil性能。如果后续通过活检或手术切除确诊为未来肺癌,则认为任何LDCT为阳性。使用德龙检验比较每个系列对的曲线下面积(AUC)。

结果

1049对标准重建滤波器与骨重建滤波器之间Sybil的性能无差异(1年时的AUC为0.84 [95%置信区间(CI):0.70 - 0.99] 对比0.86 [95% CI:0.75 - 0.98],P = 0.87),1961对标准重建滤波器与肺重建滤波器之间也无差异(1年时的AUC为0.98 [95% CI:0.97 - 0.99] 对比0.98 [95% CI:0.96 - 0.99],P = 0.81)。同样,在比较2毫米与5毫米轴向切片厚度的1288对中也无差异(1年时的AUC为0.98 [95% CI:0.94 - 1.00] 对比0.99 [95% CI:0.97 - 0.99],P = 0.68)。将肺重建滤波器与2毫米切片厚度相结合的最佳情况与将骨重建滤波器与2.5毫米切片厚度相结合的最差情况相比,在第2 - 4年发现性能有显著差异(P = 0.03)。亚分析显示西门子和东芝扫描仪之间的性能无显著差异。

结论

Sybil对未来肺癌风险的预测性能在不同的重建滤波器和轴向切片厚度下都很稳健,证明了其在各种成像设置中的通用性。组合有利的重建参数可在第2 - 4年显著提高预测能力。西门子和东芝扫描仪之间无显著差异进一步支持了Sybil的通用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验