Suppr超能文献

重组细胞骨架系统的力学与动力学

Mechanics and dynamics of reconstituted cytoskeletal systems.

作者信息

Jensen Mikkel H, Morris Eliza J, Weitz David A

机构信息

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

出版信息

Biochim Biophys Acta. 2015 Nov;1853(11 Pt B):3038-42. doi: 10.1016/j.bbamcr.2015.06.013. Epub 2015 Jun 27.

Abstract

The intracellular cytoskeleton is an active dynamic network of filaments and associated binding proteins that control key cellular properties, such as cell shape and mechanics. Due to the inherent complexity of the cell, reconstituted model systems have been successfully employed to gain an understanding of the fundamental physics governing cytoskeletal processes. Here, we review recent advances and key aspects of these reconstituted systems. We focus on the importance of assembly kinetics and dynamic arrest in determining network mechanics, and highlight novel emergent behavior occurring through interactions between cytoskeletal components in more complex networks incorporating multiple biopolymers and molecular motors.

摘要

细胞内的细胞骨架是一个由细丝和相关结合蛋白组成的活跃动态网络,它控制着关键的细胞特性,如细胞形状和力学性质。由于细胞具有内在的复杂性,重构模型系统已被成功用于了解控制细胞骨架过程的基本物理学原理。在此,我们综述这些重构系统的最新进展和关键方面。我们着重探讨组装动力学和动态停滞在决定网络力学中的重要性,并强调在包含多种生物聚合物和分子马达的更复杂网络中,通过细胞骨架成分之间的相互作用而出现的新的涌现行为。

相似文献

1
Mechanics and dynamics of reconstituted cytoskeletal systems.
Biochim Biophys Acta. 2015 Nov;1853(11 Pt B):3038-42. doi: 10.1016/j.bbamcr.2015.06.013. Epub 2015 Jun 27.
2
Multiscale architecture: Mechanics of composite cytoskeletal networks.
Biophys Rev (Melville). 2022 Aug 26;3(3):031304. doi: 10.1063/5.0099405. eCollection 2022 Sep.
3
Emergent properties of composite semiflexible biopolymer networks.
Bioarchitecture. 2014;4(4-5):138-43. doi: 10.4161/19490992.2014.989035.
4
Mechanical Properties of the Cytoskeleton and Cells.
Cold Spring Harb Perspect Biol. 2017 Nov 1;9(11):a022038. doi: 10.1101/cshperspect.a022038.
5
In vitro reconstitution of dynamic microtubules interacting with actin filament networks.
Methods Enzymol. 2014;540:301-20. doi: 10.1016/B978-0-12-397924-7.00017-0.
6
The role of multifilament structures and lateral interactions in dynamics of cytoskeleton proteins and assemblies.
J Phys Chem B. 2015 Apr 2;119(13):4653-61. doi: 10.1021/acs.jpcb.5b01219. Epub 2015 Mar 23.
7
Length regulation of active biopolymers by molecular motors.
Phys Rev Lett. 2012 Jun 22;108(25):258103. doi: 10.1103/PhysRevLett.108.258103.
8
Glassy dynamics in composite biopolymer networks.
Soft Matter. 2018 Oct 10;14(39):7970-7978. doi: 10.1039/c8sm01061g.
9
Actin cytoskeleton dynamics and the cell division cycle.
Int J Biochem Cell Biol. 2010 Oct;42(10):1622-33. doi: 10.1016/j.biocel.2010.04.007. Epub 2010 Apr 20.

引用本文的文献

1
Polarity sorting of actin filaments by motor-driven cargo transport.
Biophys J. 2025 Feb 18;124(4):704-716. doi: 10.1016/j.bpj.2025.01.007. Epub 2025 Jan 17.
2
Subcellular mechano-regulation of cell migration in confined extracellular microenvironment.
Biophys Rev (Melville). 2023 Dec 29;4(4):041305. doi: 10.1063/5.0185377. eCollection 2023 Dec.
3
The role of physical cues in the development of stem cell-derived organoids.
Eur Biophys J. 2022 Mar;51(2):105-117. doi: 10.1007/s00249-021-01551-3. Epub 2021 Jun 13.
4
Desmosomes polarize and integrate chemical and mechanical signaling to govern epidermal tissue form and function.
Curr Biol. 2021 Aug 9;31(15):3275-3291.e5. doi: 10.1016/j.cub.2021.05.021. Epub 2021 Jun 8.
5
Learning the non-equilibrium dynamics of Brownian movies.
Nat Commun. 2020 Oct 23;11(1):5378. doi: 10.1038/s41467-020-18796-9.
6
Stochastic ordering of complexoform protein assembly by genetic circuits.
PLoS Comput Biol. 2020 Jun 29;16(6):e1007997. doi: 10.1371/journal.pcbi.1007997. eCollection 2020 Jun.
7
A dynamical model of oncotripsy by mechanical cell fatigue: selective cancer cell ablation by low-intensity pulsed ultrasound.
Proc Math Phys Eng Sci. 2020 Apr;476(2236):20190692. doi: 10.1098/rspa.2019.0692. Epub 2020 Apr 29.
8
Computational modeling of single-cell mechanics and cytoskeletal mechanobiology.
Wiley Interdiscip Rev Syst Biol Med. 2018 Mar;10(2). doi: 10.1002/wsbm.1407. Epub 2017 Nov 30.
9
Nonlinear Actin Deformations Lead to Network Stiffening, Yielding, and Nonuniform Stress Propagation.
Biophys J. 2017 Oct 3;113(7):1540-1550. doi: 10.1016/j.bpj.2017.01.012. Epub 2017 Feb 16.
10
Redefining the roles of the FtsZ-ring in bacterial cytokinesis.
Curr Opin Microbiol. 2016 Dec;34:90-96. doi: 10.1016/j.mib.2016.08.008. Epub 2016 Sep 10.

本文引用的文献

1
Two fundamental mechanisms govern the stiffening of cross-linked networks.
Biophys J. 2015 Mar 24;108(6):1470-1479. doi: 10.1016/j.bpj.2015.02.015.
2
Emergent properties of composite semiflexible biopolymer networks.
Bioarchitecture. 2014;4(4-5):138-43. doi: 10.4161/19490992.2014.989035.
3
Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks.
Curr Opin Cell Biol. 2015 Feb;32:82-91. doi: 10.1016/j.ceb.2015.01.001. Epub 2015 Jan 23.
4
Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy.
Cell. 2014 Aug 14;158(4):822-832. doi: 10.1016/j.cell.2014.06.051.
5
Mechanism of calponin stabilization of cross-linked actin networks.
Biophys J. 2014 Feb 18;106(4):793-800. doi: 10.1016/j.bpj.2013.12.042.
8
F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20820-5. doi: 10.1073/pnas.1214753109. Epub 2012 Dec 3.
9
Nonequilibrium fluctuations of a remodeling in vitro cytoskeleton.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):020901. doi: 10.1103/PhysRevE.86.020901. Epub 2012 Aug 23.
10
Contraction mechanisms in composite active actin networks.
PLoS One. 2012;7(7):e39869. doi: 10.1371/journal.pone.0039869. Epub 2012 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验