Schibber E F, Mittelstein D R, Gharib M, Shapiro M G, Lee P P, Ortiz M
Division of Engineering and Applied Science, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
Department of Immuno-Oncology, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA.
Proc Math Phys Eng Sci. 2020 Apr;476(2236):20190692. doi: 10.1098/rspa.2019.0692. Epub 2020 Apr 29.
The method of , first proposed in Heyden & Ortiz (Heyden & Ortiz 2016 , 164-175 (doi:10.1016/j.jmps.2016.04.016)), exploits aberrations in the material properties and morphology of cancerous cells in order to ablate them selectively by means of tuned low-intensity pulsed ultrasound. We propose the dynamical model of oncotripsy that follows as an application of cell dynamics, statistical mechanical theory of network elasticity and 'birth-death' kinetics to describe the processes of damage and repair of the cytoskeleton. We also develop a reduced dynamical model that approximates the three-dimensional dynamics of the cell and facilitates parametric studies, including sensitivity analysis and process optimization. We show that the dynamical model predicts-and provides a conceptual basis for understanding-the oncotripsy effect and other trends in the data of Mittelstein (Mittelstein 2019 , 013701 (doi:10.1063/1.5128627)), for cells in suspension, including the dependence of cell-death curves on cell and process parameters.
这种方法最早由海登和奥尔蒂斯提出(海登和奥尔蒂斯,2016年,第164 - 175页(doi:10.1016/j.jmps.2016.04.016)),它利用癌细胞材料特性和形态的异常,通过调谐的低强度脉冲超声来选择性地消融癌细胞。我们提出了肿瘤粉碎术的动力学模型,该模型是细胞动力学、网络弹性统计力学理论和“生死”动力学的应用,用于描述细胞骨架的损伤和修复过程。我们还开发了一个简化的动力学模型,该模型近似细胞的三维动力学,并便于进行参数研究,包括敏感性分析和过程优化。我们表明,该动力学模型预测了——并为理解——悬浮细胞的肿瘤粉碎术效应及米特尔施泰因数据(米特尔施泰因,2019年,013701(doi:10.1063/1.5128627))中的其他趋势提供了概念基础,包括细胞死亡曲线对细胞和过程参数的依赖性。