Suppr超能文献

聚焦电子束诱导沉积生长的铁纳米线的形状和表面氧化对磁化反转的影响。

Influence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition.

机构信息

Laboratorio de Microscopias Avanzadas (LMA) - Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain.

Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain.

出版信息

Beilstein J Nanotechnol. 2015 Jun 15;6:1319-1331. doi: 10.3762/bjnano.6.136. eCollection 2015.

Abstract

Iron nanostructures grown by focused electron beam induced deposition (FEBID) are promising for applications in magnetic sensing, storage and logic. Such applications require a precise design and determination of the coercive field (H C), which depends on the shape of the nanostructure. In the present work, we have used the Fe2(CO)9 precursor to grow iron nanowires by FEBID in the thickness range from 10 to 45 nm and width range from 50 to 500 nm. These nanowires exhibit an Fe content between 80 and 85%, thus giving a high ferromagnetic signal. Magneto-optical Kerr characterization indicates that H C decreases for increasing thickness and width, providing a route to control the magnetization reversal field through the modification of the nanowire dimensions. Transmission electron microscopy experiments indicate that these wires have a bell-type shape with a surface oxide layer of about 5 nm. Such features are decisive in the actual value of H C as micromagnetic simulations demonstrate. These results will help to make appropriate designs of magnetic nanowires grown by FEBID.

摘要

通过聚焦电子束诱导沉积(FEBID)生长的铁纳米结构在磁传感、存储和逻辑等应用中具有广阔的前景。这些应用需要对矫顽力(H C)进行精确的设计和确定,而矫顽力取决于纳米结构的形状。在本工作中,我们使用 Fe2(CO)9 前体制备了厚度范围为 10 至 45nm、宽度范围为 50 至 500nm 的铁纳米线。这些纳米线的铁含量在 80%至 85%之间,因此具有高的铁磁信号。磁光克尔特性表明,H C 随着厚度和宽度的增加而减小,这为通过纳米线尺寸的修改来控制磁化反转场提供了一种途径。透射电子显微镜实验表明,这些纳米线具有钟形形状,表面氧化层约为 5nm。这些特征在实际的 H C 值中是决定性的,正如微磁模拟所证明的那样。这些结果将有助于对 FEBID 生长的磁性纳米线进行适当的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3c8/4505150/3ce3a45d048c/Beilstein_J_Nanotechnol-06-1319-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验