Kim M Olivia, McCammon J Andrew
Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093.
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093.
Biopolymers. 2016 Jan;105(1):43-9. doi: 10.1002/bip.22702.
Protein-ligand binding accompanies changes in the surrounding electrostatic environments of the two binding partners and may lead to changes in protonation upon binding. In cases where the complex formation results in a net transfer of protons, the binding process is pH-dependent. However, conventional free energy computations or molecular docking protocols typically employ fixed protonation states for the titratable groups in both binding partners set a priori, which are identical for the free and bound states. In this review, we draw attention to these important yet largely ignored binding-induced protonation changes in protein-ligand association by outlining physical origins and prevalence of the protonation changes upon binding. Following a summary of various theoretical methods for pKa prediction, we discuss the theoretical framework to examine the pH dependence of protein-ligand binding processes.
蛋白质-配体结合伴随着两个结合伴侣周围静电环境的变化,并且结合时可能导致质子化改变。在复合物形成导致质子净转移的情况下,结合过程是pH依赖性的。然而,传统的自由能计算或分子对接协议通常预先为两个结合伴侣中可滴定基团采用固定的质子化状态,游离态和结合态相同。在本综述中,我们通过概述结合时质子化变化的物理起源和普遍性,提请注意蛋白质-配体缔合中这些重要但很大程度上被忽视的结合诱导的质子化变化。在总结了各种预测pKa的理论方法之后,我们讨论了研究蛋白质-配体结合过程pH依赖性的理论框架。