Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
J Am Chem Soc. 2013 Jul 31;135(30):10906-9. doi: 10.1021/ja4042687. Epub 2013 Jul 22.
Activation of class-A G-protein-coupled receptors (GPCRs) involves large-scale reorganization of the H3/H6 interhelical network. In rhodopsin (Rh), this process is coupled to a change in the protonation state of a key residue, E134, whose exact role in activation is not well understood. Capturing this millisecond pH-dependent process is a well-appreciated challenge. We have developed a scheme combining the harmonic Fourier beads (HFB) method and constant-pH molecular dynamics with pH-based replica exchange (pH-REX) to gain insight into the structural changes that occur along the activation pathway as a function of the protonation state of E134. Our results indicate that E134 is protonated as a consequence of tilting of H6 by ca. 4.0° with respect to its initial position and simultaneous rotation by ca. 23° along its principal axis. The movement of H6 is associated with breakage of the E247-R135 and R135-E134 salt bridges and concomitant release of the E134 side chain, which results in an increase in its pKa value above physiological pH. An increase in the hydrophobicity of the environment surrounding E134 leads to further tilting and rotation of H6 and upshift of the E134 pKa. Such atomic-level information, which is not accessible through experiments, refines the earlier proposed sequential model of Rh activation (see: Zaitseva, E.; et al. Sequential Rearrangement of Interhelical Networks Upon Rhodopsin Activation in Membranes: The Meta IIa Conformational Substate . J. Am. Chem. Soc. 2010, 132, 4815) and argues that the E134 protonation switch is both a cause and a consequence of the H6 motion.
A1 类 G 蛋白偶联受体 (GPCR) 的激活涉及 H3/H6 螺旋间网络的大规模重组。在视紫红质 (Rh) 中,该过程与关键残基 E134 质子化状态的变化相关联,但其在激活中的具体作用尚不清楚。捕捉这一毫秒级 pH 依赖性过程是一个备受关注的挑战。我们开发了一种结合调和傅里叶珠 (HFB) 方法和基于 pH 的恒态分子动力学与 pH 复制交换 (pH-REX) 的方案,以深入了解随着 E134 质子化状态的变化,激活途径中发生的结构变化。我们的结果表明,E134 质子化是由于 H6 相对于其初始位置倾斜约 4.0°,同时沿其主轴线旋转约 23°所致。H6 的运动与 E247-R135 和 R135-E134 盐桥的断裂以及 E134 侧链的释放有关,这导致其 pKa 值增加到高于生理 pH 值。E134 周围环境的疏水性增加会导致 H6 的进一步倾斜和旋转,以及 E134 pKa 的上移。这种原子水平的信息是通过实验无法获得的,它细化了之前提出的 Rh 激活的顺序模型(见:Zaitseva, E.; 等人。在膜中视紫红质激活时,螺旋间网络的顺序重排:Meta IIa 构象亚态。J. Am. Chem. Soc. 2010, 132, 4815),并认为 E134 质子化开关既是 H6 运动的原因,也是其结果。