Suppr超能文献

用于全眼段成像的双波段双焦点光学相干断层扫描技术

Dual band dual focus optical coherence tomography for imaging the whole eye segment.

作者信息

Fan Shanhui, Li Lin, Li Qian, Dai Cuixia, Ren Qiushi, Jiao Shuliang, Zhou Chuanqing

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.

出版信息

Biomed Opt Express. 2015 Jun 12;6(7):2481-93. doi: 10.1364/BOE.6.002481. eCollection 2015 Jul 1.

Abstract

We developed an improved dual band dual focus spectral domain optical coherence tomography (SD-OCT) for in vivo 2D/3D imaging of the whole eye segment, including the whole anterior segment and retina. The system featured two OCT channels with two different bands centered at 840 nm and 1050 nm, which were designed to image the retina and the anterior segments of the eye, respectively. By combing the two probe light beams for co-axial scanning and separating them for focusing at different segments of the eye with a combination of three dichroic mirrors, we not only minimized the loss of the backscattered light from the sample but also improved the imaging depth, scan range and resolution. The full resolved complex (FRC) method was applied to double the imaging depth for the whole anterior segment imaging, with which an imaging depth of 36.71 mm in air was achieved. We demonstrated that this system was capable of measuring the dynamic changes of ocular dimensions, including the asphericity of the cornea and lens, during accommodation.

摘要

我们开发了一种改进的双波段双焦点光谱域光学相干断层扫描(SD-OCT)技术,用于对整个眼段进行体内二维/三维成像,包括整个眼前段和视网膜。该系统具有两个OCT通道,分别以840纳米和1050纳米为中心的两个不同波段,旨在分别对视网膜和眼的前段进行成像。通过使用三个二向色镜的组合,将两束探测光束合并进行同轴扫描,并将它们分开以聚焦在眼睛的不同部位,我们不仅最大限度地减少了样品背向散射光的损失,还提高了成像深度、扫描范围和分辨率。全分辨复数(FRC)方法被应用于将整个眼前段成像的深度加倍,通过该方法在空气中实现了36.71毫米的成像深度。我们证明了该系统能够测量在调节过程中眼部尺寸的动态变化,包括角膜和晶状体的非球面性。

相似文献

1
Dual band dual focus optical coherence tomography for imaging the whole eye segment.
Biomed Opt Express. 2015 Jun 12;6(7):2481-93. doi: 10.1364/BOE.6.002481. eCollection 2015 Jul 1.
2
Optical coherence tomography for whole eye segment imaging.
Opt Express. 2012 Mar 12;20(6):6109-15. doi: 10.1364/OE.20.006109.
3
Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch.
Biomed Opt Express. 2012 Jul 1;3(7):1506-20. doi: 10.1364/BOE.3.001506. Epub 2012 Jun 6.
4
Versatile optical coherence tomography for imaging the human eye.
Biomed Opt Express. 2013 Jun 4;4(7):1031-44. doi: 10.1364/BOE.4.001031. Print 2013 Jul 1.
5
Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation.
Biomed Opt Express. 2013 Mar 1;4(3):466-80. doi: 10.1364/BOE.4.000466. Epub 2013 Feb 21.
8
High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth.
Biomed Opt Express. 2013 Feb 1;4(2):245-59. doi: 10.1364/BOE.4.000245. Epub 2013 Jan 16.
9
SD-OCT with prolonged scan depth for imaging the anterior segment of the eye.
Ophthalmic Surg Lasers Imaging. 2010 Nov-Dec;41 Suppl:S65-9. doi: 10.3928/15428877-20101031-18.

引用本文的文献

1
Optical beam scanner with reconfigurable non-mechanical control of beam position, angle, and focus for low-cost whole-eye OCT imaging.
Biomed Opt Express. 2023 Aug 4;14(9):4468-4484. doi: 10.1364/BOE.493917. eCollection 2023 Sep 1.
2
The Development and Clinical Application of Innovative Optical Ophthalmic Imaging Techniques.
Front Med (Lausanne). 2022 Jun 30;9:891369. doi: 10.3389/fmed.2022.891369. eCollection 2022.
3
Whole anterior segment and retinal swept source OCT for comprehensive ocular screening.
Biomed Opt Express. 2021 Feb 5;12(3):1263-1278. doi: 10.1364/BOE.414592. eCollection 2021 Mar 1.
4
Retinal neurovascular responses to transcorneal electrical stimulation measured with optical coherence tomography.
Exp Biol Med (Maywood). 2020 Feb;245(4):289-300. doi: 10.1177/1535370219900495. Epub 2020 Jan 20.
5
Advances in Whole-Eye Optical Coherence Tomography Imaging.
Asia Pac J Ophthalmol (Phila). 2019;8(2):99-104. doi: 10.22608/APO.201901.
6
Wide-field whole eye OCT system with demonstration of quantitative retinal curvature estimation.
Biomed Opt Express. 2018 Dec 21;10(1):338-355. doi: 10.1364/BOE.10.000338. eCollection 2019 Jan 1.
7
Full ocular biometry through dual-depth whole-eye optical coherence tomography.
Biomed Opt Express. 2018 Jan 2;9(2):360-372. doi: 10.1364/BOE.9.000360. eCollection 2018 Feb 1.
8
Assessment of eye length changes in accommodation using dynamic extended-depth OCT.
Biomed Opt Express. 2017 Apr 26;8(5):2709-2719. doi: 10.1364/BOE.8.002709. eCollection 2017 May 1.
9
Whole-globe biomechanics using high-field MRI.
Exp Eye Res. 2017 Jul;160:85-95. doi: 10.1016/j.exer.2017.05.004. Epub 2017 May 17.

本文引用的文献

3
Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography.
Am J Ophthalmol. 2014 May;157(5):1064-69. doi: 10.1016/j.ajo.2014.01.016. Epub 2014 Jan 30.
4
Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography.
Am J Ophthalmol. 2014 Feb;157(2):412-420.e2. doi: 10.1016/j.ajo.2013.09.033. Epub 2013 Oct 7.
5
Noninvasive imaging and measurement of accommodation using dual-channel SD-OCT.
Curr Eye Res. 2014 Jun;39(6):611-9. doi: 10.3109/02713683.2013.860991. Epub 2013 Nov 8.
7
Versatile optical coherence tomography for imaging the human eye.
Biomed Opt Express. 2013 Jun 4;4(7):1031-44. doi: 10.1364/BOE.4.001031. Print 2013 Jul 1.
8
Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers.
Biomed Opt Express. 2012 Nov 1;3(11):2733-51. doi: 10.1364/BOE.3.002733. Epub 2012 Oct 3.
10
"Coherence radar" and "spectral radar"-new tools for dermatological diagnosis.
J Biomed Opt. 1998 Jan;3(1):21-31. doi: 10.1117/1.429899.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验