Buron Jonas D, Pizzocchero Filippo, Jepsen Peter U, Petersen Dirch H, Caridad José M, Jessen Bjarke S, Booth Timothy J, Bøggild Peter
DTU Nanotech - Department of Micro- and Nanotechnology, Technical University of Denmark, Building 345 Ørsteds Plads, 2800 Kgs. Lyngby, Denmark.
DTU Fotonik - Department of Photonics Engineering, Technical University of Denmark, Building 343 Ørsteds Plads, 2800 Kgs. Lyngby, Denmark.
Sci Rep. 2015 Jul 24;5:12305. doi: 10.1038/srep12305.
Carrier mobility and chemical doping level are essential figures of merit for graphene, and large-scale characterization of these properties and their uniformity is a prerequisite for commercialization of graphene for electronics and electrodes. However, existing mapping techniques cannot directly assess these vital parameters in a non-destructive way. By deconvoluting carrier mobility and density from non-contact terahertz spectroscopic measurements of conductance in graphene samples with terahertz-transparent backgates, we are able to present maps of the spatial variation of both quantities over large areas. The demonstrated non-contact approach provides a drastically more efficient alternative to measurements in contacted devices, with potential for aggressive scaling towards wafers/minute. The observed linear relation between conductance and carrier density in chemical vapour deposition graphene indicates dominance by charged scatterers. Unexpectedly, significant variations in mobility rather than doping are the cause of large conductance inhomogeneities, highlighting the importance of statistical approaches when assessing large-area graphene transport properties.
载流子迁移率和化学掺杂水平是石墨烯的关键品质因数,对这些特性及其均匀性进行大规模表征是石墨烯用于电子学和电极商业化的先决条件。然而,现有的测绘技术无法以非破坏性方式直接评估这些重要参数。通过对具有太赫兹透明背栅的石墨烯样品进行非接触太赫兹光谱电导测量,反卷积得到载流子迁移率和密度,我们能够呈现这两个量在大面积上的空间变化图。所展示的非接触方法为在接触式器件中进行测量提供了一种效率大幅提高的替代方案,具有朝着每分钟处理晶圆的速度进行大规模扩展的潜力。在化学气相沉积石墨烯中观察到的电导与载流子密度之间的线性关系表明电荷散射体起主导作用。出乎意料的是,迁移率的显著变化而非掺杂是导致电导不均匀性较大的原因,这凸显了在评估大面积石墨烯传输特性时采用统计方法的重要性。