Suppr超能文献

通过结合启动子和蓝藻集胞藻PCC 6803株中的中性位点对光合自养蛋白生产进行微调

Fine-Tuning of Photoautotrophic Protein Production by Combining Promoters and Neutral Sites in the Cyanobacterium Synechocystis sp. Strain PCC 6803.

作者信息

Ng Andrew H, Berla Bertram M, Pakrasi Himadri B

机构信息

Department of Biology, Washington University, St. Louis, Missouri, USA.

Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, Missouri, USA.

出版信息

Appl Environ Microbiol. 2015 Oct;81(19):6857-63. doi: 10.1128/AEM.01349-15. Epub 2015 Jul 24.

Abstract

Cyanobacteria are photosynthetic cell factories that use solar energy to convert CO2 into useful products. Despite this attractive feature, the development of tools for engineering cyanobacterial chassis has lagged behind that for heterotrophs such as Escherichia coli or Saccharomyces cerevisiae. Heterologous genes in cyanobacteria are often integrated at presumptively "neutral" chromosomal sites, with unknown effects. We used transcriptome sequencing (RNA-seq) data for the model cyanobacterium Synechocystis sp. strain PCC 6803 to identify neutral sites from which no transcripts are expressed. We characterized the two largest such sites on the chromosome, a site on an endogenous plasmid, and a shuttle vector by integrating an enhanced yellow fluorescent protein (EYFP) expression cassette expressed from either the Pcpc560 or the Ptrc1O promoter into each locus. Expression from the endogenous plasmid was as much as 14-fold higher than that from the chromosome, with intermediate expression from the shuttle vector. The expression characteristics of each locus correlated predictably with the promoters used. These findings provide novel, characterized tools for synthetic biology and metabolic engineering in cyanobacteria.

摘要

蓝细菌是光合细胞工厂,利用太阳能将二氧化碳转化为有用的产品。尽管具有这一吸引人的特性,但用于构建蓝细菌底盘的工具开发却落后于大肠杆菌或酿酒酵母等异养生物。蓝细菌中的异源基因通常整合在假定的“中性”染色体位点上,其影响未知。我们利用模式蓝细菌聚球藻属6803菌株的转录组测序(RNA-seq)数据,来识别不表达转录本的中性位点。我们通过将由Pcpc560或Ptrc1O启动子表达的增强型黄色荧光蛋白(EYFP)表达盒整合到每个位点,对染色体上两个最大的此类位点、一个内源质粒上的位点以及一个穿梭载体进行了表征。来自内源质粒的表达比来自染色体的表达高14倍,穿梭载体的表达处于中间水平。每个位点的表达特征与所使用的启动子具有可预测的相关性。这些发现为蓝细菌的合成生物学和代谢工程提供了新的、经过表征的工具。

相似文献

3
A Genetic Toolbox for Modulating the Expression of Heterologous Genes in the Cyanobacterium Synechocystis sp. PCC 6803.
ACS Synth Biol. 2018 Jan 19;7(1):276-286. doi: 10.1021/acssynbio.7b00297. Epub 2017 Dec 22.
5
Genetic tools for advancement of Synechococcus sp. PCC 7002 as a cyanobacterial chassis.
Microb Cell Fact. 2016 Nov 10;15(1):190. doi: 10.1186/s12934-016-0584-6.
7
Engineering of genetic control tools in Synechocystis sp. PCC 6803 using rational design techniques.
J Biotechnol. 2015 Dec 20;216:36-46. doi: 10.1016/j.jbiotec.2015.09.042. Epub 2015 Oct 9.

引用本文的文献

1
Heterologous Production of the Structurally Complex Diterpenoid Forskolin in sp. PCC. 6803.
Bioengineering (Basel). 2025 Jun 23;12(7):683. doi: 10.3390/bioengineering12070683.
2
A toolbox to engineer the highly productive cyanobacterium Synechococcus sp. PCC 11901.
Plant Physiol. 2024 Oct 1;196(2):1674-1690. doi: 10.1093/plphys/kiae261.
4
The current situations and limitations of genetic engineering in cyanobacteria: a mini review.
Mol Biol Rep. 2023 Jun;50(6):5481-5487. doi: 10.1007/s11033-023-08456-8. Epub 2023 Apr 29.
5
Current Metabolic Engineering Strategies for Photosynthetic Bioproduction in Cyanobacteria.
Microorganisms. 2023 Feb 11;11(2):455. doi: 10.3390/microorganisms11020455.
6
The Molecular Toolset and Techniques Required to Build Cyanobacterial Cell Factories.
Adv Biochem Eng Biotechnol. 2023;183:65-103. doi: 10.1007/10_2022_210.
7
Synthetic Biology Tool Development Advances Predictable Gene Expression in the Metabolically Versatile Soil Bacterium .
Front Bioeng Biotechnol. 2022 Mar 16;10:800734. doi: 10.3389/fbioe.2022.800734. eCollection 2022.
8
Putative Phenotypically Neutral Genomic Insertion Points in Prokaryotes.
ACS Synth Biol. 2022 Apr 15;11(4):1681-1685. doi: 10.1021/acssynbio.1c00531. Epub 2022 Mar 10.
9
Approaches in the photosynthetic production of sustainable fuels by cyanobacteria using tools of synthetic biology.
World J Microbiol Biotechnol. 2021 Oct 19;37(12):201. doi: 10.1007/s11274-021-03157-5.

本文引用的文献

1
Synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002.
ACS Synth Biol. 2015 May 15;4(5):595-603. doi: 10.1021/sb500260k. Epub 2014 Sep 25.
2
Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria.
Nucleic Acids Res. 2014;42(17):e136. doi: 10.1093/nar/gku673. Epub 2014 Jul 29.
3
Daily expression pattern of protein-encoding genes and small noncoding RNAs in synechocystis sp. strain PCC 6803.
Appl Environ Microbiol. 2014 Sep;80(17):5195-206. doi: 10.1128/AEM.01086-14. Epub 2014 Jun 13.
5
Recombinant protein expression in Escherichia coli: advances and challenges.
Front Microbiol. 2014 Apr 17;5:172. doi: 10.3389/fmicb.2014.00172. eCollection 2014.
6
Metabolic design for cyanobacterial chemical synthesis.
Photosynth Res. 2014 Jun;120(3):249-61. doi: 10.1007/s11120-014-9997-4. Epub 2014 Apr 10.
8
Design and analysis of LacI-repressed promoters and DNA-looping in a cyanobacterium.
J Biol Eng. 2014 Jan 27;8(1):4. doi: 10.1186/1754-1611-8-4.
9
Photoautotrophic production of D-lactic acid in an engineered cyanobacterium.
Microb Cell Fact. 2013 Nov 25;12:117. doi: 10.1186/1475-2859-12-117.
10
Synthetic biology of cyanobacteria: unique challenges and opportunities.
Front Microbiol. 2013 Aug 27;4:246. doi: 10.3389/fmicb.2013.00246. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验