Marada Suresh, Navarro Gemma, Truong Ashley, Stewart Daniel P, Arensdorf Angela M, Nachtergaele Sigrid, Angelats Edgar, Opferman Joseph T, Rohatgi Rajat, McCormick Peter J, Ogden Stacey K
Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America.
Department of Biochemistry and Molecular Biology, Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)University of Barcelona, Barcelona, Spain.
PLoS Genet. 2015 Aug 20;11(8):e1005473. doi: 10.1371/journal.pgen.1005473. eCollection 2015 Aug.
The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice.
G蛋白偶联受体(GPCR)平滑受体(Smo)是进化上保守的Hedgehog(Hh)信号通路中必需的信号转导分子。尽管Smo信号传导的某些方面从果蝇到脊椎动物都是保守的,但也发生了显著的进化差异。这些差异包括其活性亚细胞定位的变化,以及脊椎动物Smo响应配体诱导不同的G蛋白依赖性和非依赖性信号的能力。经典的Smo信号传导至Gli转录效应器是以G蛋白非依赖性方式发生的,而其非经典信号传导则利用Gαi。脊椎动物Smo是否能够在这些信号传导途径之间选择性地偏向其信号传导尚不清楚。N-糖基化是一种翻译后修饰,可影响GPCR的运输、配体反应性和信号输出。果蝇和脊椎动物系统中的Smo蛋白都带有N-聚糖,但它们在Smo信号传导中的作用尚未确定。在此,我们对果蝇和小鼠的Smo糖基化进行了全面分析,并支持N-聚糖在信号传导中的作用存在功能差异。在果蝇Smo的七个预测糖基受体位点中,有一个是必不可少的。该位点N-糖基化的缺失破坏了Smo的运输并减弱了其信号传导能力。与之形成鲜明对比的是,我们发现小鼠Smo上所有四个预测的N-糖基化位点对于正常运输、激动剂结合和经典信号诱导都是可有可无的。然而,糖基化不足的蛋白通过Gαi诱导非经典信号的能力受损,首次提供了Smo可以偏向其信号传导以及翻译后修饰可以影响这一过程的证据。因此,我们推测N-聚糖功能发生了深刻转变,从影响果蝇中Smo的内质网输出转变为影响小鼠中Smo的信号输出。