Mohan Hemanth, Verhoog Matthijs B, Doreswamy Keerthi K, Eyal Guy, Aardse Romy, Lodder Brendan N, Goriounova Natalia A, Asamoah Boateng, B Brakspear A B Clementine, Groot Colin, van der Sluis Sophie, Testa-Silva Guilherme, Obermayer Joshua, Boudewijns Zimbo S R M, Narayanan Rajeevan T, Baayen Johannes C, Segev Idan, Mansvelder Huibert D, de Kock Christiaan P J
Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands.
Department of Neurobiology and Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Cereb Cortex. 2015 Dec;25(12):4839-53. doi: 10.1093/cercor/bhv188. Epub 2015 Aug 28.
The size and shape of dendrites and axons are strong determinants of neuronal information processing. Our knowledge on neuronal structure and function is primarily based on brains of laboratory animals. Whether it translates to human is not known since quantitative data on "full" human neuronal morphologies are lacking. Here, we obtained human brain tissue during resection surgery and reconstructed basal and apical dendrites and axons of individual neurons across all cortical layers in temporal cortex (Brodmann area 21). Importantly, morphologies did not correlate to etiology, disease severity, or disease duration. Next, we show that human L(ayer) 2 and L3 pyramidal neurons have 3-fold larger dendritic length and increased branch complexity with longer segments compared with temporal cortex neurons from macaque and mouse. Unsupervised cluster analysis classified 88% of human L2 and L3 neurons into human-specific clusters distinct from mouse and macaque neurons. Computational modeling of passive electrical properties to assess the functional impact of large dendrites indicates stronger signal attenuation of electrical inputs compared with mouse. We thus provide a quantitative analysis of "full" human neuron morphologies and present direct evidence that human neurons are not "scaled-up" versions of rodent or macaque neurons, but have unique structural and functional properties.
树突和轴突的大小及形状是神经元信息处理的重要决定因素。我们对神经元结构和功能的了解主要基于实验动物的大脑。由于缺乏关于“完整”人类神经元形态的定量数据,尚不清楚这是否适用于人类。在此,我们在切除手术过程中获取了人类脑组织,并重建了颞叶皮质(布罗德曼21区)所有皮质层中单个神经元的基底树突、顶端树突和轴突。重要的是,形态与病因、疾病严重程度或病程无关。接下来,我们发现,与猕猴和小鼠颞叶皮质神经元相比,人类第2层和第3层锥体神经元的树突长度大三倍,分支复杂性增加,且节段更长。无监督聚类分析将88%的人类第2层和第3层神经元归类为与小鼠和猕猴神经元不同的人类特异性聚类。通过对被动电特性进行计算建模以评估大树突的功能影响,结果表明与小鼠相比,电输入的信号衰减更强。因此,我们提供了对“完整”人类神经元形态的定量分析,并直接证明人类神经元并非啮齿动物或猕猴神经元的“放大版”,而是具有独特的结构和功能特性。