Suppr超能文献

植物乳杆菌ST-III中低聚果糖的代谢:通过差异基因转录和细胞膜流动性的改变

Metabolism of Fructooligosaccharides in Lactobacillus plantarum ST-III via Differential Gene Transcription and Alteration of Cell Membrane Fluidity.

作者信息

Chen Chen, Zhao Guozhong, Chen Wei, Guo Benheng

机构信息

School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.

出版信息

Appl Environ Microbiol. 2015 Nov;81(22):7697-707. doi: 10.1128/AEM.02426-15. Epub 2015 Aug 28.

Abstract

Although fructooligosaccharides (FOS) can selectively stimulate the growth and activity of probiotics and beneficially modulate the balance of intestinal microbiota, knowledge of the molecular mechanism for FOS metabolism by probiotics is still limited. Here a combined transcriptomic and physiological approach was used to survey the global alterations that occurred during the logarithmic growth of Lactobacillus plantarum ST-III using FOS or glucose as the sole carbon source. A total of 363 genes were differentially transcribed; in particular, two gene clusters were induced by FOS. Gene inactivation revealed that both of the clusters participated in the metabolism of FOS, which were transported across the membrane by two phosphotransferase systems (PTSs) and were subsequently hydrolyzed by a β-fructofuranosidase (SacA) in the cytoplasm. Combining the measurements of the transcriptome- and membrane-related features, we discovered that the genes involved in the biosynthesis of fatty acids (FAs) were repressed in cells grown on FOS; as a result, the FA profiles were altered by shortening of the carbon chains, after which membrane fluidity increased in response to FOS transport and utilization. Furthermore, incremental production of acetate was observed in both the transcriptomic and the metabolic experiments. Our results provided new insights into gene transcription, the production of metabolites, and membrane alterations that could explain FOS metabolism in L. plantarum.

摘要

尽管低聚果糖(FOS)可以选择性地刺激益生菌的生长和活性,并有益地调节肠道微生物群的平衡,但关于益生菌对FOS代谢的分子机制的了解仍然有限。在此,采用转录组学和生理学相结合的方法,以FOS或葡萄糖作为唯一碳源,研究植物乳杆菌ST-III对数生长期间发生的全局变化。共有363个基因发生差异转录;特别是,有两个基因簇被FOS诱导。基因失活表明这两个基因簇都参与了FOS的代谢,FOS通过两个磷酸转移酶系统(PTSs)跨膜转运,随后在细胞质中被β-呋喃果糖苷酶(SacA)水解。结合转录组和膜相关特征的测量结果,我们发现,在以FOS为碳源生长的细胞中,参与脂肪酸(FAs)生物合成的基因受到抑制;结果,脂肪酸谱因碳链缩短而改变,之后膜流动性因FOS的转运和利用而增加。此外,在转录组学和代谢实验中均观察到乙酸产量增加。我们的结果为基因转录、代谢产物生成以及膜变化提供了新的见解,这些变化可以解释植物乳杆菌中FOS的代谢情况。

相似文献

4
Identification of a putative operon involved in fructooligosaccharide utilization by Lactobacillus paracasei.
Appl Environ Microbiol. 2006 Dec;72(12):7518-30. doi: 10.1128/AEM.00877-06. Epub 2006 Oct 6.
5
Transcriptional analysis of galactomannooligosaccharides utilization by Lactobacillus plantarum WCFS1.
Food Microbiol. 2020 Apr;86:103336. doi: 10.1016/j.fm.2019.103336. Epub 2019 Sep 14.
6
Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays.
Appl Environ Microbiol. 2007 Mar;73(6):1753-65. doi: 10.1128/AEM.01151-06. Epub 2007 Jan 19.
10
Functional analysis of the fructooligosaccharide utilization operon in Lactobacillus paracasei 1195.
Appl Environ Microbiol. 2007 Sep;73(18):5716-24. doi: 10.1128/AEM.00805-07. Epub 2007 Jul 20.

引用本文的文献

1
The effect of complex prebiotics on quality and functional properties of synbiotic fermented milk.
Food Chem X. 2025 Aug 18;30:102929. doi: 10.1016/j.fochx.2025.102929. eCollection 2025 Aug.
2
Recent developments in the production of prebiotic fructooligosaccharides using fungal fructosyltransferases.
Mycology. 2024 Apr 2;15(4):564-584. doi: 10.1080/21501203.2024.2323713. eCollection 2024.
3
Development of a low pollution medium for the cultivation of lactic acid bacteria.
Heliyon. 2023 Nov 25;9(12):e22609. doi: 10.1016/j.heliyon.2023.e22609. eCollection 2023 Dec.
4
Transcriptional control of carbohydrate catabolism by the CcpA protein in the ruminal bacterium .
Appl Environ Microbiol. 2023 Oct 31;89(10):e0047423. doi: 10.1128/aem.00474-23. Epub 2023 Oct 12.
5
Persistence of maternal milk derived in the infant feces and its antagonistic activity against O157:H7.
Food Sci Biotechnol. 2023 Jan 20;32(8):1079-1089. doi: 10.1007/s10068-023-01243-y. eCollection 2023 Jul.
6
Effects of FBT215 and prebiotics on the gut microbiota structure of mice.
Food Sci Biotechnol. 2022 Oct 26;32(4):481-488. doi: 10.1007/s10068-022-01185-x. eCollection 2023 Mar.
7
Unraveling the mechanism of raffinose utilization in Ren by transcriptomic analysis.
3 Biotech. 2022 Sep;12(9):229. doi: 10.1007/s13205-022-03280-6. Epub 2022 Aug 17.
9
Sweet Immunity Aspects during Levan Oligosaccharide-Mediated Priming in Rocket against .
Biomolecules. 2022 Feb 25;12(3):370. doi: 10.3390/biom12030370.
10
The Carbohydrate Metabolism of .
Int J Mol Sci. 2021 Dec 15;22(24):13452. doi: 10.3390/ijms222413452.

本文引用的文献

2
Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids.
Cell. 2015 May 21;161(5):1152-1163. doi: 10.1016/j.cell.2015.04.026. Epub 2015 May 14.
3
Understanding carbon catabolite repression in Escherichia coli using quantitative models.
Trends Microbiol. 2015 Feb;23(2):99-109. doi: 10.1016/j.tim.2014.11.002. Epub 2014 Dec 2.
6
Stress responses in probiotic Lactobacillus casei.
Crit Rev Food Sci Nutr. 2015;55(6):740-9. doi: 10.1080/10408398.2012.675601.
8
Prebiotic effect of fructooligosaccharide in the simulator of the human intestinal microbial ecosystem (SHIME® model).
J Med Food. 2014 Aug;17(8):894-901. doi: 10.1089/jmf.2013.0092. Epub 2014 Mar 21.
9
In vitro fermentation of prebiotic oligosaccharides by Bifidobacterium lactis HN019 and Lactobacillus spp.
Anaerobe. 2014 Feb;25:11-7. doi: 10.1016/j.anaerobe.2013.11.001. Epub 2013 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验